Skip to main content
Log in

Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In the present survey, some progress in the stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping is reviewed. First, the stochastic averaging method for quasi integrable Hamiltonian systems with fractional derivative damping under various random excitations is briefly introduced. Then, the stochastic stability, stochastic bifurcation, first passage time and reliability, and stochastic fractional optimal control of the systems studied by using the stochastic averaging method are summarized. The focus is placed on the effects of fractional derivative order on the dynamics and control of the systems. Finally, some possible extensions are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Adolfsson, Nonlinear fractional order viscoelasticity at large strains. Nonlinear Dyn. 38 (2004), 233–246.

    Article  MathSciNet  MATH  Google Scholar 

  2. O.P. Agrawal, Stochastic analysis of a 1-D system with fractional damping of order 1/2. J. Vib. Acoust. 124 (2002), 454–460.

    Article  Google Scholar 

  3. O.P. Agrawal, Analytical solution for stochastic response of a fractionally damped beam. J. Vib. Acoust. 126 (2004), 561–566.

    Article  Google Scholar 

  4. O.P. Agrawal, A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38 (2004), 323–337.

    Article  MATH  Google Scholar 

  5. O.P. Agrawal, A general scheme for stochastic analysis of fractional optimal control problems. In: Fractional Differentiation and Its Applications, L.A. Mahaute, J.A.T. Machado, J.C. Trigeassou, J. Sabatier (Eds.) (2005), 615–624.

  6. O.P. Agrawal, D. Baleanu, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Contr. 13 (2007), 1269–1281.

    Article  MathSciNet  MATH  Google Scholar 

  7. S.T. Ariaratnam, D.S. Tam, W.C. Xie, Lyapunov exponents and stochastic stability of coupled linear system. Probab. Eng. Mech. 6 (1991), 151–156.

    Article  Google Scholar 

  8. S.T. Ariaratnam, W.C. Xie, Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitations. ASME J. Appl. Mech. 59 (1992), 664–673.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, No 3 (1983), 201–210.

    Article  MATH  Google Scholar 

  10. R.L. Bagley, P.J. Torvik, Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, No 5 (1983), 741–748.

    Article  MATH  Google Scholar 

  11. R.L. Bagley, P.J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23, No 6 (1985), 918–925.

    Article  MATH  Google Scholar 

  12. D. Baleanu, O. Defterli, O. P. Agrawal, A central difference numerical scheme for fractional optimal control problems. J. Vib. Contr. 15 (2009), 583–597.

    Article  MathSciNet  Google Scholar 

  13. G. Blankenship, G.C. Papanicolaou, Stability and control of stochastic systems with wide-band noise disturbances SIAM J. Appl. Math. 34 (1978), 437–476.

    Article  MathSciNet  MATH  Google Scholar 

  14. G.Q. Cai, Y.K. Lin, Nonlinearly damped systems under simultaneous broad-band and harmonic excitations. Nonlinear Dyn. 6 (1994), 163–177.

    Article  Google Scholar 

  15. M. Caputo, Vibrations on an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56 (1974), 897–904.

    Article  MATH  Google Scholar 

  16. W. Chen, An intuitive study of fractional derivative modeling and fractional quantum in soft matter. J. Vib. Contr. 14 (2008), 1651–1657.

    Article  MATH  Google Scholar 

  17. L.C. Chen, Q. Lou, Z.S. Li, W.Q. Zhu, Stochastic stability of harmonically and ran-domly excited Duffing oscillator with damping modeled by a fractional derivative. Sci. China Phys. Mech. Astron. (2012); doi:10.1007/s11433-012-4888-1.

  18. W. Chen, H.G. Sun, X.C. Li, Fractional Derivative Modeling of Mechanics and Engineering Problems. Science Press, Beijing (2010).

    Google Scholar 

  19. L.C. Chen, W.Q. Zhu, Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations. Acta. Mech. 207 (2009), 109–120.

    Article  MATH  Google Scholar 

  20. L.C. Chen, W.Q. Zhu, Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56 (2009), 231–241.

    Article  MathSciNet  MATH  Google Scholar 

  21. L.C. Chen, W.Q. Zhu, The first passage failure of SDOF strongly nonlinear stochastic system with fractional derivative damping. J. Vib. Contr. 15 (2009), 1247–1266.

    Article  MathSciNet  MATH  Google Scholar 

  22. L.C. Chen, W.Q. Zhu, Reliability of quasi integrable generalized Hamiltonian systems. Probab. Eng. Mech. 25 (2010), 61–66.

    Article  Google Scholar 

  23. L.C. Chen, W.Q. Zhu, First passage failure of quasi partially integrable generalized Hamiltonian systems. Int. J. Non-linear Mech. 45 (2010), 56–62.

    Article  Google Scholar 

  24. L.C. Chen, W.Q. Zhu, First passage failure of quasi non-integrable generalized Hamiltonian systems. Arch. Appl. Mech. 80 (2010), 883–893.

    Article  Google Scholar 

  25. L.C. Chen, W.Q. Zhu, First passage failure of SDOF nonlinear oscillator with lightly fractional derivative damping under real noise excitations. Probab. Eng. Mech. 26 (2011), 208–214.

    Article  Google Scholar 

  26. L.C. Chen, W.Q. Zhu, Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. Int. J. Non-Linear Mech. 46 (2011), 1324–1329.

    Article  MathSciNet  Google Scholar 

  27. L.C. Chen, Q.Q. Zhuang, W. Q. Zhu, Response of SDOF nonlinear oscillators with lightly fractional derivative damping under real noise excitations. Eur. Phys. J. Special Topics. 193 (2011), 81–92.

    Article  Google Scholar 

  28. L.C. Chen, Q.Q. Zhuang, W. Q. Zhu, First passage failure of MDOF quasi-integrable Hamiltonian systems with fractional derivative damping. Acta. Mech. 222 (2011), 245–260.

    Article  MATH  Google Scholar 

  29. M. Di Paola, G. Failla, A. Pirrotta, Stationary and non-stationary stochastic response of linear fractional viscoelastic systems. Probab. Eng. Mech. 28 (2012), 85–90.

    Article  Google Scholar 

  30. G.E. Drăgănescu, Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives. J. Math. Phys. 47 (2006), 082902.

    Article  MathSciNet  Google Scholar 

  31. G. Failla, A. Pirrotta, On the stochastic response of a fractionally-damped Duffing oscillator. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 5131–5142.

    Article  MathSciNet  Google Scholar 

  32. A. D. Freed, K. Diethelm, Caputo derivatives in viscoelasticity: a nonlinear finite-deformation theory for tissue. Fract. Calc. Appl. Anal. 10, No 3 (2007), 219–248; at http://www.math.bas.bgfcaa.

    MathSciNet  MATH  Google Scholar 

  33. C.B. Gan, W.Q. Zhu, First passage failure quasi-non-integrable-Hamiltonian systems. Int. J. Non-linear Mech. 36 (2001), 209–220.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Gemant, On Fractional Differentials. Philosophical Magazine Series 7 25, No 168 (1938), 540–549.

    Google Scholar 

  35. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri, F. Mainardi (Eds.), Springer-Verlag, Wien — N. York (1997), 223–276.

    Google Scholar 

  36. F. Hu, W.Q. Zhu, L.C. Chen, Stochastic Hopf bifurcation of quasiintegrable Hamiltonian systems with fractional derivative damping. Int. J. Bifur. Chaos. 22 (2012), 1250083.

    Article  MathSciNet  Google Scholar 

  37. F. Hu, L.C. Chen, W.Q. Zhu, Stationary response of strongly nonlinear oscillator with fractional derivative damping under bounded noise excitation. Int. J. Non-linear Mech. 47 (2012), 1081–1087.

    Article  Google Scholar 

  38. F. Hu, W.Q. Zhu, L.C. Chen, Stochastic fractional optimal control of quasi integrable Hamiltonian system with fractional derivative damping. Nonlinear Dyn. (2012), In press; doi:10.1007/s11071-012-0547-3.

  39. Z.L. Huang, X.L. Jin, Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative. J. Sound Vib. 319 (2009), 1121–1135.

    Article  Google Scholar 

  40. Z.L. Huang, X.L. Jin, C.W. Lim, Y. Wang, Statistical analysis for stochastic systems including fractional derivatives. Nonlinear Dyn. 59 (2010), 339–349.

    Article  MATH  Google Scholar 

  41. Z.L. Huang, W.Q. Zhu, A new approach to almost-Sure asymptotic stability of stochastic systems of higher dimension. Int. J. Non-linear Mech. 38 (2003), 239–247.

    Article  MathSciNet  MATH  Google Scholar 

  42. Z.L. Huang, W.Q. Zhu, Stochastic averaging method for quasiintegrabe Hamiltonian system under combined harmonic and white noise excitations. Int. J. Non-linear Mech. 39 (2004), 1421–1434.

    Article  MathSciNet  MATH  Google Scholar 

  43. Z.L. Huang, W.Q. Zhu, Y. Suzuki, Stochastic averaging of strongly nonlinear oscillators under combined harmonic and white noise excitations. J. Sound Vib. 238 (2000), 233–256.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Kempfle, I. Schäfer, H. Beyer, Fractional calculus via functional calculus: theory and applications. Nonlinear Dyn. 29 (2002), 99–127.

    Article  MATH  Google Scholar 

  45. R.Z. Khasminskii, Sufficient and necessary conditions for the asymptotic stability of linear stochastic systems. Theory Probab. Appl. 12 (1967), 144–147.

    Article  Google Scholar 

  46. R.Z. Khasminskii, On the averaging principle for the Itô stochastic differential equations. Kibernetica. 4 (1968), 260–279 (In Russian).

    Google Scholar 

  47. R.C. Koeller, Application of fractional calculus to the theory of viscoelasticity. ASME J. Appl. Mech. 51 (1984), 299–307.

    Article  MathSciNet  MATH  Google Scholar 

  48. C.G. Koh, J.M. Kelly, Application of fractional derivatives to seismic analysis of base-isolated models. Earthq. Eng. Struct. Dyn. 19 (1990), 229–241.

    Article  Google Scholar 

  49. F. Kozin, A survey of stability of stochastic systems. Automatica. 5, (1969), 95–112.

    Article  MathSciNet  MATH  Google Scholar 

  50. F. Kozin, Z.Y. Zhang, On almost sure sample stability of nonlinear Itô differential equations. Probab. Eng. Mech. 6 (1991), 92–95.

    Article  Google Scholar 

  51. J. Kushner, Optimality conditions for the average cost per unit time problem with a diffusion model. SIAM J. Contr. Optim. 16 (1978), 330–346.

    Article  MathSciNet  MATH  Google Scholar 

  52. A.Y.T. Leung, Z.J. Guo, Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2169–2183.

    Article  MathSciNet  MATH  Google Scholar 

  53. Y.K. Lin, G.Q. Cai, Statistics of first passage failure. ASME J. Appl. Mech. 61 (1994), 93–99.

    Article  MathSciNet  MATH  Google Scholar 

  54. Y.K. Lin, G.Q. Cai, Probabilistic Structural Dynamics, Advanced Theory and Applications. McGraw-Hill, New York (1995).

    Google Scholar 

  55. Z.H. Liu, W.Q. Zhu, Stochastic Hopf bifurcation of quasi-integrable Hamiltonian systems with time-delayed feedback control. J. Theor. Appl. Mech, 46 (2008), 531–550.

    Google Scholar 

  56. F. Mainardi, Fractional relaxation in anelastic solids. J. Alloys Compds. 211 (1994), 534–538.

    Article  Google Scholar 

  57. F. Mainardi, R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey. Fract. Calc. Appl. Anal. 10, No 3 (2007), 269–308; at http://www.math.bas.bgfcaa.

    MathSciNet  MATH  Google Scholar 

  58. F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal. 15, No 4 (2012), 712–717; DOI:10.2478/s13540-012-0048-6; http://link.springer.com/article/10.2478/s13540-012-0048-6.

    MathSciNet  Google Scholar 

  59. N. Makris, M.C. Constaninou, Fractional-derivative Maxwell model for viscous dampers. J. Struct. Eng. 117, No 9 (1991), 2708–2724.

    Article  Google Scholar 

  60. V.I. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic number for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197–231.

    MathSciNet  Google Scholar 

  61. A. Pálfalvi, Efficient solution of a vibration equation involving fractional derivatives. Int. J. Non-linear Mech. 45 (2010), 169–175.

    Article  Google Scholar 

  62. J. Padovan, J.T. Sawicki, Nonlinear vibrations of fractionally damped systems. Nonlinear Dyn. 16 (1998), 321–336.

    Article  MathSciNet  MATH  Google Scholar 

  63. K.D. Papoulia, J.M. Kelly, Visco-hyperelastic model for filled rubbers used in vibration isolation. ASME J. Eng. Mater. Technol. 119 (1997), 292–297.

    Article  Google Scholar 

  64. I. Petráš, Tuning and implementation methods for fractional-order controllers. Fract. Calc. Appl. Anal. 15, No 2 (2012), 282–303; DOI:10.2478/s13540-012-0021-4; http://link.springer.com/article/10.2478/s13540-012-0021-4.

    MathSciNet  Google Scholar 

  65. I. Podlubny, Fractional-order systems and \(PI^\lambda D^\mu \)-controllers. IEEE Trans. Automatic Control. 44 (1999), 208–214.

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Pritz, Analysis of four-parameter fractional derivative model of real solid materials. J. Sound Vib. 195 (1996), 103–115.

    Article  MATH  Google Scholar 

  67. S.S. Ray, B.P. Poddar, R.K. Bera, Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian decomposition method. ASME J. Appl. Mech. 72 (2005), 290–295.

    Article  MATH  Google Scholar 

  68. J.B. Roberts, First passage probability for nonlinear oscillator. ASCE J. Eng. Mech. Div. 102 (1976), 851–866.

    Google Scholar 

  69. J.B. Roberts, First passage time for random excited nonlinear oscillator. J. Sound Vib. 109 (1986), 33–50.

    Article  MATH  Google Scholar 

  70. Y.A. Rossikhin, M.V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50 (1997), 15–67.

    Article  Google Scholar 

  71. Y.A. Rossikhin, M.V. Shitikova, Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with damping modeled by a fractional derivative. J. Eng. Math. 37 (2000), 343–362.

    Article  MathSciNet  MATH  Google Scholar 

  72. Y.A. Rossikhin, M.V. Shitikova, Analysis of free non-linear vibrations of a viscoelastic plate under the condition of different internal resonances. Int. J. Non-linear Mech. 41, (2006), 313–325.

    Article  MATH  Google Scholar 

  73. Y.A. Rossikhin, M.V. Shitikova, Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fract. Calc. Appl. Anal. 10, No 2 (2007), 111–121; at http://www.math.bas.bgfcaa.

    MathSciNet  MATH  Google Scholar 

  74. Y.A. Rossikhin, M.V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63 (2010), 010801.

    Article  Google Scholar 

  75. F. Rüdinger, Tuned mass damper with fractional derivative damping. Eng. Struct. 28 (2006), 1774–1779.

    Article  Google Scholar 

  76. K.L. Shen, T.T. Soong, Modeling of viscoelastic dampers for structural applications. ASCE J. Eng. Mech. 121 (1995), 694–701.

    Article  Google Scholar 

  77. Y.J. Shen, S.P. Yang, H.J. Xing, G.S. Gao, rimary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 3092–3100.

    Article  MathSciNet  MATH  Google Scholar 

  78. N. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of vicoelastic materials. JSME Int. J. Ser. C 42 (1999), 825–837.

    Article  Google Scholar 

  79. A. Shokooh, L. Suarez, A comparison of numerical methods applied to a fractional model of damping materials. J. Vib. Contr. 5 (1999), 331–354.

    Article  Google Scholar 

  80. P.D. Spanos, Survival probability of non-linear oscillators subjected to broad-band random disturbance. Int. J. Non-linear Mech. 17 (1982), 303–317.

    Article  MathSciNet  MATH  Google Scholar 

  81. P.D. Spanos, G.I. Evangelatos, Response of a non-linear system with restoring forces governed by fractional derivatives-time domain simulation and statistical linearization solution. Soil Dyn. Earthq. Eng. 30 (2010), 811–821.

    Article  Google Scholar 

  82. P.D. Spanos, G.P. Solomos, Barrier crossing due to transient excitation. ASCE J. Eng. Mech. Div. 110 (1984), 20–26.

    Article  Google Scholar 

  83. P.D. Spanos, B.A. Zeldin, Random vibration of systems with frequency-dependent parameters or fractional derivatives. ASCE J. Eng. Mech. 123 (1997), 290–292.

    Article  Google Scholar 

  84. R.L. Stratonovich, Topics in the Theory of Random Noise, Vol. 1. Gordon Breach, New York (1963).

    Google Scholar 

  85. L. Suarez, A. Shokooh, An eigenvector expansion method for the solution of motion containing fractional derivatives. ASME J. Appl. Mech. 64 (1997), 629–635.

    Article  MathSciNet  MATH  Google Scholar 

  86. J.A. Tenreiro Machado, Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 4, No 1 (2001), 47–66; at http://www.math.bas.bgfcaa.

    MathSciNet  MATH  Google Scholar 

  87. J.A. Tenreiro Machado, Optimal tuning of fractional controllers using genetic algorithms. Nonlinear Dyn. 62 (2010), 447–452.

    Article  MATH  Google Scholar 

  88. P. Wahi, A. Chatterjee, Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 38 (2004), 3–22.

    Article  MathSciNet  MATH  Google Scholar 

  89. Y.J. Wu, W.Q. Zhu, Stochastic averaging method of strongly nonlinear oscillator under combined harmonic and wide-band noise excitations. J. Vib. Acoust. 130 (2008), 051004.

    Article  Google Scholar 

  90. K. Ye, L. Li, J.X. Tang, Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative. Earthq. Eng. Eng. Vib. 2 (2003), 133–139.

    Article  Google Scholar 

  91. J.M. Yong, X.Y. Zhou, Stochastic Controls, Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999).

    Google Scholar 

  92. W.Q. Zhu, Feedback stabilization of quasi nonintegrable Hamiltonian systems by using Lyapunov exponent. Nonlinear Dyn. 36 (2004), 455–470.

    Article  MATH  Google Scholar 

  93. W.Q. Zhu, Lyapunov exponent and stochastic stability of quasi-nonintegrable Hamiltonian systems. Int. J. Non-linear Mech. 39 (2004), 569–579.

    Article  MATH  Google Scholar 

  94. W. Q. Zhu, Nonlinear stochastic dynamics and control in Hamiltonian formulation. Appl. Mech. Rev. 59 (2006), 230–248.

    Article  Google Scholar 

  95. W.Q. Zhu, M.L. Deng, Z.L. Huang, First passage failure of quasi integrable Hamiltonian system. ASME J. Appl. Mech. 69 (2002), 274–282.

    Article  MathSciNet  MATH  Google Scholar 

  96. W.Q. Zhu, Z.L. Huang, Stochastic stability of quasi-non-integrable-Hamiltonian systems. J. Sound Vib. 218 (1998), 769–789.

    Article  MATH  Google Scholar 

  97. W.Q. Zhu, Z.L. Huang, Lyapunov exponent and stochastic stability of quasi-integrable Hamiltonian system. ASME J. Appl. Mech. 66 (1999), 211–217.

    Article  MathSciNet  Google Scholar 

  98. W.Q. Zhu, Z.L. Huang, Stochastic Hopf bifurcation of quasinonintegrable-Hamiltonian systems. Int. J. Non-linear Mech. 34 (1999), 437–447.

    Article  MathSciNet  MATH  Google Scholar 

  99. W.Q. Zhu, Z.L. Huang, Feedback stabilization of quasi integrable- Hamiltonian systems. ASME J. Appl. Mech. 70 (2003), 129–136.

    Article  MathSciNet  MATH  Google Scholar 

  100. W.Q. Zhu, Z.L. Huang, M.L. Deng, First passage failure and feedback minimization of quasi partially integrable Hamiltonian systems. Int. J. Non-linear Mech. 38 (2003), 1133–1148.

    Article  MathSciNet  MATH  Google Scholar 

  101. W.Q. Zhu, Z.L. Huang, Y. Suzuki, Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems. Int. J. Non-Linear Mech. 37 (2002), 419–437.

    Article  MathSciNet  MATH  Google Scholar 

  102. W.Q. Zhu, M.Q. Lu, Q.T. Wu, Stochastic jump and bifurcation of a Duffing oscillator under narrowband excitation. J. Sound Vib. 165 (1993), 285–304.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lincong Chen.

About this article

Cite this article

Chen, L., Hu, F. & Zhu, W. Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping. fcaa 16, 189–225 (2013). https://doi.org/10.2478/s13540-013-0013-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0013-z

MSC 2010

Key Words and Phrases

Navigation