Skip to main content
Log in

Statistical analysis for stochastic systems including fractional derivatives

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An analytical scheme to determine the statistical behavior of a stochastic system including two terms of fractional derivative with real, arbitrary, fractional orders is proposed. In this approach, Green’s functions obtained are based on a Laplace transform approach and the weighted generalized Mittag–Leffler function. The responses of the system can be subsequently described as a Duhamel integral-type close-form expression. These expressions are applied to obtain the statistical behavior of a dynamical system excited by stationary stochastic processes. The numerical simulation based on the modified Euler method and Monte Carlo approach is developed. Three examples of single-degree-of-freedom system with fractional derivative damping under Gaussian white noise excitation are presented to illustrate application of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)

    Google Scholar 

  3. Lim, S.C.: Fractional derivative quantum fields at positive temperature. Physica A 363, 269–281 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: Fractional calculus: a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)

    Article  MATH  Google Scholar 

  6. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23, 918–925 (1985)

    Article  MATH  Google Scholar 

  7. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. ASME J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  Google Scholar 

  8. Metzeler, R., Nonnenmacher, T.F.: Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials. Int. J. Plast. 19, 941–959 (2003)

    Article  Google Scholar 

  9. Agrawal, O.P.: Application of fractional derivatives in thermal analysis of disk brakes. Nonlinear Dyn. 38, 191–206 (2004)

    Article  MATH  Google Scholar 

  10. Deng, R., Davies, P., Bajaj, A.K.: A case study on the use of fractional derivatives: the low-frequency viscoelastic uni-directional behavior of polyurethane foam. Nonlinear Dyn. 38, 247–265 (2004)

    Article  MATH  Google Scholar 

  11. Depollier, C., Fellah, Z.E.A., Fellah, M.: Propagation of transient acoustic waves in layered porous media: fractional equations for the scattering operators. Nonlinear Dyn. 38, 181–190 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Baeumer, B.: Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, 1–4 (2002)

    Article  MathSciNet  Google Scholar 

  14. Laskin, N.: Fractional market dynamics. Physica A 287, 482–492 (2000)

    Article  MathSciNet  Google Scholar 

  15. Jumarie, G.: Fractionalization of the complex-valued Brownian motion of order n using Riemann–Liouville derivative: Applications to mathematical finance and stochastic mechanics. Chaos Solitons Fractals 28, 1285–1305 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jumarie, G.: Path integral for the probability of the trajectories generated by fractional dynamics subject to Gaussian white noise. Appl. Math. Lett. 20, 846–852 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mainardi, F., Pironi, P.L.: The fractional Langevin equation: Brownian motion revisited. Extr. Math. 10, 140–154 (1996)

    MathSciNet  Google Scholar 

  18. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Agrawal, O.P.: Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 483, 265–274 (2003)

    Article  Google Scholar 

  20. Spanos, P.D., Zeldin, B.A.: Random vibration of systems with frequency dependent parameters or fractional derivatives. J. Eng. Mech. 123, 290–292 (1997)

    Article  Google Scholar 

  21. Rüdinger, F.: Tuned mass damper with fractional derivative damping. Eng. Struct. 28, 1774–1779 (2006)

    Article  Google Scholar 

  22. Agrawal, O.P.: Analytical solution for stochastic response of a fractionally damped beam. J. Vib. Acoust. 126, 561–566 (2004)

    Article  Google Scholar 

  23. Agrawal, O.P.: Stochastic analysis of dynamic systems containing fractional derivatives. J. Sound Vib. 247, 927–938 (2001)

    Article  Google Scholar 

  24. Drozdov, A.D.: Fractional oscillator driven by a Gaussian noise. Physica A 376, 237–245 (2007)

    Article  Google Scholar 

  25. Ford, N.J., Simpson, A.C.: The approximate solution of fractional differential equations of order greater than 1. Numerical Analysis Report 386, Manchester Center for Numerical Computational Mathematics (2001)

  26. Lin, Y.K., Cai, G.Q.: Probabilistic Structural Dynamics: Advanced Theory and Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  27. Seybold, H., Hilfer, R.: Numerical algorithm for calculating the generalized Mittag–Leffler function. SIAM J. Numer. Anal. 47, 69–88 (2008)

    Article  MathSciNet  Google Scholar 

  28. Mainardi, F., Mura, A., Gorenflo, R., Stojanovic, M.: The two forms of fractional relaxation of distributed order. J. Vib. Control 13, 1249–1268 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Koh, C.G., Kelly, J.M.: Application of fractional derivatives to seismic analysis of base-isolated models. Earthq. Eng. Struct. Dyn. 19, 229–241 (1990)

    Article  Google Scholar 

  30. Yuan, L.X., Agrawal, O.P.: A numerical scheme for dynamics systems containing fractional derivatives. In: Proceedings of 1998 ASME Design Engineering Technical Conferences, Atlanta, GA, Sept. 1998, pp. 13–16

  31. Shokooh, A., Suarez, L.: A comparison of numerical methods applied to a fractional model of damping materials. J. Vib. Control 5, 331–354 (1999)

    Article  Google Scholar 

  32. Zhu, Z.Y., Li, G.G., Cheng, C.J.: A numerical method for fractional integral with application. Appl. Math. Mech. 24, 373–384 (2003)

    Article  MATH  Google Scholar 

  33. Huang, Z.L., Jin, X.L.: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative. J. Sound. Vib. 319, 1121–1135 (2009)

    Article  Google Scholar 

  34. Mainardi, F., Gorenflo, R.: On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118, 283–299 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Suarez, L.E., Shokooh, A.: An eigenvector expansion method for the solution of motion containing fractional derivatives. J. Appl. Mech. 64, 629–635 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z.L., Jin, X.L., Lim, C.W. et al. Statistical analysis for stochastic systems including fractional derivatives. Nonlinear Dyn 59, 339–349 (2010). https://doi.org/10.1007/s11071-009-9543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9543-7

Keywords

Navigation