Skip to main content
Log in

Well-Posedness for Weak and Strong Solutions of Non-Homogeneous Initial Boundary Value Problems for Fractional Diffusion Equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We study the well-posedness for initial boundary value problems associated with time fractional diffusion equations with non-homogenous boundary and initial values. We consider both weak and strong solutions for the problems. For weak solutions, we introduce a definition of solutions which allows to prove the existence of solution to the initial boundary value problems with non-zero initial and boundary values and non-homogeneous source terms lying in some negative-order Sobolev spaces. For strong solutions, we introduce an optimal compatibility condition and prove the existence of the solutions. We introduce also some sharp conditions guaranteeing the existence of solutions with more regularity in time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Carcione, F. Sanchez-Sesma, F. Luzón and J. Perez Gavilán, Theory and simulation of time-fractional fluid diffusion in porous media. J. of Phys. A: Math. and Theoret. 46 (2013), # 345501.

  2. S.D. Eidelman and A.N. Kochubei, Cauchy problem for fractional diffusion equations. J. Diff. Equations 199 (2004), 211–255.

    Article  MathSciNet  Google Scholar 

  3. K. Fujishiro and Y. Kian, Determination of time dependent factors of coefficients in fractional diffusion equations. Math. Control Related Fields 6 (2016), 251–269.

    Article  MathSciNet  Google Scholar 

  4. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001).

    Book  Google Scholar 

  5. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, London (1985).

    MATH  Google Scholar 

  6. D. Guidetti, On maximal regularity for the Cauchy-Dirichlet parabolic problem with fractional time derivative. J. Math. Anal. Appl. 476 (2019), 637–664.

    Article  MathSciNet  Google Scholar 

  7. B. Jin and W. Rundell, A tutorial on inverse problems for anomalous diffusion processes. Inverse problems 31 (2015), # 035003.

  8. J. Kemppainen, Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains. Fract. Calc. Appl. Anal. 15, No 2 (2011), 195–206; 10.2478/s13540-012-0014-3; https://www.degruyter.com/view/journals/fca/15/2/fca.15.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  9. J. Kemppainen, Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition. Abstract and Applied Analysis 2011 (2011), 10.1155/2011/321903.

  10. J. Kemppainen and K. Ruotsalainen, Boundary integral solution of the time-fractional diffusion equation. Integr. Equ. Oper. Theory 64 (2009), 239–249.

    Article  MathSciNet  Google Scholar 

  11. Y. Kian, Z. Li, Y. Liu, M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single measurement. Math. Annalen (2020); Online, 10.1007/s00208-020-02027-z.

    Google Scholar 

  12. Y. Kian, L. Oksanen, E. Soccorsi, and M. Yamamoto, Global uniqueness in an inverse problem for time-fractional diffusion equations. J. Diff. Equat. 264 (2018), 1146–1170.

    Article  MathSciNet  Google Scholar 

  13. Y. Kian, É. Soccorsi, M. Yamamoto, On time-fractional diffusion equations with space-dependent variable order. Ann. H. Poincaré 19, No 12 (2018), 3855–3881.

    Article  MathSciNet  Google Scholar 

  14. Y. Kian and M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20, No 1 (2017), 117–138; 10.1515/fca-2017-0006; https://www.degruyter.com/view/journals/fca/20/1/fca.20.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  15. Y. Kian, M. Yamamoto, Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations. Inverse Problems 35 (2019), # 115006.

  16. Y. Kian and M. Yamamoto, Well-posedness for weak and strong solutions of non-homogeneous initial boundary value problems for fractional diffusion equations. Preprint, arXiv:2004.14305 (2020).

    Google Scholar 

  17. A. Kubica, K. Ryszewska, and M. Yamamoto, Time-fractional Differential Equations: A Theoretical Introduction. Springer, Tokyo (2020).

    Book  Google Scholar 

  18. A. Kubica and M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract. Calc. Appl. Anal. 21, No 2 (2018), 276–311; 10.1515/fca-2018-0018; https://www.degruyter.com/view/journals/fca/21/2/fca.21.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  19. Z. Li, Y. Kian, É. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptotic Analysis 115 (2019), 95–126.

    Article  MathSciNet  Google Scholar 

  20. J-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York (1972).

    Book  Google Scholar 

  21. J. Nakagawa, K. Sakamoto, M. Yamamoto, Overview to mathematical analysis for fractional diffusion equations-new mathematical aspects motivated by industrial collaboration. J. of Math-for-Industry 2 (2010A-10), 99–108.

    MathSciNet  MATH  Google Scholar 

  22. E. Otárola and A.J. Salgado, Regularity of solutions to space-time fractional wave equations: A PDE approach. Fract. Calc. Appl. Anal. 21, No 5 (2018), 1262–1293; 10.1515/fca-2018-0067; https://www.degruyter.com/view/journals/fca/21/5/fca.21.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  23. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  24. K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011), 426–447.

    Article  MathSciNet  Google Scholar 

  25. W.R. Schneider, Fractional diffusion and wave equations. J. Math. Phys. 30 (1989), 134–144.

    Article  MathSciNet  Google Scholar 

  26. M. Yamamoto Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations. J. Math. Anal. Appl. 460 (2018), 365–381.

    Article  MathSciNet  Google Scholar 

  27. R. Zacher Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces. Funkcialaj Ekvacioj 52 (2009), 1–18.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kian Yavar.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavar, K., Yamamoto, M. Well-Posedness for Weak and Strong Solutions of Non-Homogeneous Initial Boundary Value Problems for Fractional Diffusion Equations. Fract Calc Appl Anal 24, 168–201 (2021). https://doi.org/10.1515/fca-2021-0008

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0008

Keywords

Keywords

Navigation