Skip to main content
Log in

Enhancement in UV emission and band gap by Fe doping in ZnO thin films

  • Original paper
  • Published:
Opto-Electronics Review

Abstract

Enhancement of the optical band gap of ZnO from 3.14 to 3.29 eV has been obtained using Fe dopant. Undoped and doped ZnO films are deposited by sol-gel spin coating. XRD patterns indicate polycrystalline nature and hexagonal wurtzite structure of Zn1−xFexO films. EDX analysis confirms the presence of iron dopant. The photoluminescence spectra show an ultraviolet emission peak at 398 nm (NBE emission) and defect emission peak at 485 nm. Intensity of the NBE emission is much higher for the doped samples with its ratio to defect emission intensity highest for 2 at. %doping. The NBE emission shifts to higher energy with increasing dopant concentration in a manner similar to that exhibited by the band gap. Surface morphology has been studied using FESEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Shukla, A. Srivastava, and K.C. Dubey, “Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition”, J. Cryst. Growth 294, 427 (2006).

    Article  ADS  Google Scholar 

  2. F.K. Shan, B.I. Kim, G.X. Liu, Z.F. Liu, J.Y. Sohn, and W.J. Lee, B.C. Shin, and Y.S. Yu, “Blue shift of near band edge emission in Mg doped ZnO thin films and aging”, J. Appl. Phys. 95, 4772 (2004).

    Article  ADS  Google Scholar 

  3. K.P. Misra, R.K. Shukla, and A. Srivastava, “Blue shift in optical band gap in nanocrystalline Zn1−xCaxO films deposited by sol-gel method”, Appl. Phys. Lett. 95, 031901 (2009).

    Article  ADS  Google Scholar 

  4. P. Misra, P. Bhattacharya, K. Mallik, S. Rajagopalan, L.M. Kukreja, and K.C. Rustagi, “Variation of band gap with oxygen ambient pressure in MgxZn1−xO thin films grown by pulsed laser deposition”, Solid State Comm. 117, 673 (2001).

    Article  ADS  Google Scholar 

  5. T.A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, and S.P. Subramanian, “Comparative investigation on nanocrystal structure, optical, and electrical properties of ZnO and Sr-doped ZnO thin films using chemical bath deposition method”, J Mater Sci. 43, 1776 (2008).

    Article  ADS  Google Scholar 

  6. P. Misra, P.K. Sahoo, P. Tripathi, V.N. Kulkarni, R.V. Nandedkar, and L.M. Kukreja, “Sequential pulsed laser deposition of CdxZn1−xO alloy thin films for engineering ZnO band gap”, Appl. Phys. A 78, 37 (2004).

    Article  ADS  Google Scholar 

  7. S. Vijayalakshmi, S. Venkataraj, and R. Jayavel, “Characterization of cadmium doped zinc oxide (Cd: ZnO) thin films prepared by spray pyrolysis method”, J. Phys. D: Appl. Phys. 41, 245403 (2008).

    Article  ADS  Google Scholar 

  8. W. Water, S-F Wang, Y-P Chen, and J-C Pu, “Calcium and strontium doped ZnO films for love wave sensor applications”, Integrated Ferroelectrics 72, 13 (2005).

    Article  Google Scholar 

  9. A.K. Das, P. Misra, A. Bose, S.C. Joshi, R. Kumar, T.K. Sharma, and L.M. Kukreja, “Structural, electrical and optical characteristics of Al doped ZnO films grown by sequential pulsed laser deposition”, Phys. Express 3, 5 (2013).

    Google Scholar 

  10. H. Li, Y. Zhang, X. Pan, H. Zhang, T. Wang, and E. Xie, “Effects of In and Mg doping on properties of ZnO nanoparticles by flame spray synthesis”, J Nanopart Res. 11, 917 (2009).

    Article  Google Scholar 

  11. Q. Luo, L.S. Wang, H.Z. Guo, K.Q. Lin, Y. Chen, G. H. Yue, and D. L. Peng, “Blue luminescence from Ce-doped ZnO thin films prepared by magnetron sputtering”, Appl. Phys. A108, 239 (2012).

    Article  ADS  Google Scholar 

  12. A. Douayar, P. Prieto, G. Schmerber, K. Nouneh, R. Diaz, I. Chaki, S. Colis, A. El Fakir, N. Hassanain, A. Belayachi, Z. Sekkat, A. Slaoui, A. Dinia, and M. Abd-Lefdi, “Investigation of the structural, optical and electrical properties of Nd-doped ZnO thin films deposited by spray pyrolysis”, Eur. Phys. J. Appl. Phys. 61, 10304 (2013).

    Article  ADS  Google Scholar 

  13. C. Wang, Z. Chen, Y. He, L. Li, and D. Zhang, “Structure, morphology and properties of Fe-doped ZnO films prepared byfacing-target magnetron sputtering system”, Appl. Surf. Sci. 255, 6881 (2009).

    Article  ADS  Google Scholar 

  14. A.Y. Polyakov, A.V. Govorkov, N.B. Smirnov, N.V. Pashkova, S.J. Pearton, K. Ip, R.M. Frazier, C.R. Abernathy, D.P. Norton, J.M. Zavada, and R.G. Wilson, “Optical and magnetic properties of ZnO bulk crystals implanted with Cr and Fe”, Mater. Sci. Semicond. Process. 7, 77 (2004).

    Article  Google Scholar 

  15. R. Janisch, P. Gopal, and N.A. Spaldin, “Transition metal-doped TiO2 and ZnO present status of the field”, J. Phys.: Condens. Matter 17, R657 (2005).

    ADS  Google Scholar 

  16. K.J. Kim and Y.R. Park, “Optical investigation of Zn1−xFexO films grown on Al2O3 (0001) by radiofrequency sputtering”, J. Appl. Phys. 96, 4150 (2004).

    Article  ADS  Google Scholar 

  17. Z.C. Chen, L.J. Zhuge, X.M. Wu, and Y.D. Meng, “Initial study on the structure and optical properties of Zn1−xFexO films”, Thin Solid Films 515, 5462 (2007).

    Article  ADS  Google Scholar 

  18. A.P. Rambu, V. Nica, and M. Dobromir, “Influence of Fe-doping on the optical and electrical properties of ZnO films”, Superlattices and Microstructures 59, 87 (2013).

    Article  ADS  Google Scholar 

  19. U. Alver, T. Kılınç, E. Bacaksız, and S. Nezir, “Structure and optical properties of Zn1−xFexO thin films prepared by ultrasonic spray pyrolysis”, Mat. Sci. Eng. B138, 74 (2007).

    Google Scholar 

  20. L. Xu and X. Li, “Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol-gel method”, J. Cryst. Growth 312, 851 (2010).

    Article  ADS  Google Scholar 

  21. A. Parra-Palomino, O. Perales-Perez, R. Singhal, M. Tomar, J. Hwang, and P.M. Voyles, “Structural, optical, and magnetic characterization of monodisperse Fe-doped ZnO nanocrystals”, J. Appl. Phys. 103, 07D121 (2008).

    Article  Google Scholar 

  22. A. Srivastava, R.K. Shukla, and K.P. Misra, “Photoluminescence from screen printed ZnO based nanocrystalline films”, Cryst. Res. Technol. 46, 949 (2011).

    Google Scholar 

  23. A.S. Russell and J.C. Carver, “Reduction of ions of nickel, cobalt, iron and other metals by zinc amalgam”, Nature 142, 210 (1938).

    Article  ADS  Google Scholar 

  24. K. Jayanthi, S.V. Manorama, and S. Chawla, “Obserbation of Nd3+ visible line emission in ZnO: Nd3+ prepared by a controlled reaction in the solid state”, J. Phys. D: Appl. Phys. 46, 325101 (2013).

    Article  Google Scholar 

  25. R.N. Gayen, K. Sarkar, S. Hussain, R. Bhar, and A.K. Pal, “Effect of annealing temperatures on properties of sol-gel grown ZnO-ZrO2 films”, Indian J. Pure Appl. Phys. 49, 470 (2011).

    Google Scholar 

  26. S.L. Patil, M.A. Chougule, S,G. Pawar, S. Sen, and V.B. Patil, “Effect of camphor sulfonic acid doping on structural, morphological, optical and electrical transport properties on polyaniline-ZnO nanocomposites”, Soft Nanoscience Lett. 2, 46 (2012).

    Google Scholar 

  27. X-W. Du, Y-S. Fu, J. Sun, X. Han, and J. Liu, “Complete UV emission of ZnO nanoparticles in a PMMA matrix”, Semicond. Sci. Technol. 21, 1202 (2006).

    Article  ADS  Google Scholar 

  28. T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen, “Effect of annealing temperatures on properties of sol-gel grown ZnO-ZrO2 films”, Cryst. Res. Technol. 45, 1154 (2010).

    Article  Google Scholar 

  29. P.D.C. King and T.D. Veal, “Conductivity in transparent oxide semiconductors”, J. Phys.: Condens. Matter. 23, 334214 (2011).

    Google Scholar 

  30. H. Matsui and H. Tabata, “Lattice, band, and spin engineering in Zn1−xCoxO”, J. Appl. Phys. 113, 183525 (2013).

    Article  ADS  Google Scholar 

  31. Y.S. Wang, P.J. Thomas, and P. O’Brien, “Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe Ions”, J. Phys. Chem. B110, 21412 (2006).

    Google Scholar 

  32. J.H. Zheng, J.L. Song, Z. Zhao, Q. Jiang, and J.S. Lian, “Optical and magnetic properties of Nd-doped ZnO nanoparticles”, Cryst. Res. Technol. 47, 713 (2012).

    Article  Google Scholar 

  33. R.B. Bylsma,.M. Becker, J. Kossut, and U. Debska, “Dependence of energy gap on x and T in Zn1−xMnxSe: The role of exchange interaction”, Phys. Rev. B33, 8207 (1986).

    Article  ADS  Google Scholar 

  34. J. Diouri, J.P. Lascaray, and M. El Amrani, “Effect of the magnetic order on the optical-absorption edge in Cd and Mn, Te”, Phys. Rev. B31, 7995 (1985).

    Article  ADS  Google Scholar 

  35. Y.R. Lee and A.K. Ramdas, “Energy gap, excitonic, and “internal” Mn2+ optical transition in Mn-based II–VI diluted magnetic semiconductors”, Phys. Rev. B38, 10600 (1988).

    Article  ADS  Google Scholar 

  36. J.K. Furdyna, “Diluted magnetic semiconductors”, J. Appl. Phys. 64, R29 (1988).

    Article  ADS  Google Scholar 

  37. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, “An oxide-diluted magnetic semiconductor: Mn-doped ZnO”, Appl. Phys. Lett. 75, 3366 (1999).

    Article  ADS  Google Scholar 

  38. Q. Guoqiang, Z. Guanglei, Y. Jinhui, Y. Gang, F. Hua, and J. Fengqiu, “Electronic band gap of ZnO under triaxial strain”, J. Wuhan University of Tech.-Mater. Sci. Ed. 28, 48 (2013).

    Article  Google Scholar 

  39. R.E. Marotti, D.N. Guerra, C. Bello, G. Machado, and E.A. Dalchiele “Band gap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential”, Sol. Energ. Mat. Sol. C82, 85 (2004).

    Article  Google Scholar 

  40. S.S. Kurbanov, G.N. Panin, T.W. Kim, and T.W. Kang, “Impact of visible light illumination on ultraviolet emission from ZnO nanocrystals”, Phys. Rev. B78, 045311 (2008).

    Article  ADS  Google Scholar 

  41. H.D. Li, S.F. Yu, A.P. Abiyasa, Clement Yuen, S.P. Lau, H.Y. Yang, Eunice S.P. Leong, “Strain dependence of lasing mechanisms in ZnO epilayers”, Appl. Phys. Lett. 86, 261111 (2005).

    Article  ADS  Google Scholar 

  42. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, A. Deepthy, and B. Krishnan, “Size dependent fluorescence spectroscopy of nanocolloids of ZnO”, J. Appl. Phys. 102, 063524 (2007).

    Article  ADS  Google Scholar 

  43. A. Ghosh and R.N.P. Choudhary, “Structural evolution and visible photoluminescence of Zn-ZnO nanophosphor”, Phys. Status Solidi A206, 535 (2009).

    Article  ADS  Google Scholar 

  44. B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett. 79, 943 (2001).

    Article  ADS  Google Scholar 

  45. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, and H.B. Pan, “The electronic structure and spectral properties of ZnO and its defects”, Nucl. Instrum. Methods Phys. Res. B199, 286 (2003).

    Article  ADS  Google Scholar 

  46. L. M. Kukreja, P. Misra, J. Fallert, D.M. Phase, and H. Kalt, “Correlation of spectral features of photoluminescence with residual native defects of ZnO thin films annealed at different temperatures”, J. Appl. Phys. 112, 013525 (2012).

    Article  ADS  Google Scholar 

  47. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, and H.K. Cho, “A comparative analysis of deep level emission in ZnO layers deposited by various methods”, J. Appl. Phys. 105, 013502 (2009).

    Article  ADS  Google Scholar 

  48. A. Janotti and C.G. Van de Walle, “Native point defects in ZnO”, Phys. Rev. B76, 165202 (2007).

    Article  ADS  Google Scholar 

  49. D.C. Reynolds, D.C. Look, B. Jogai, and H. Morkoc, “Similarities in the band edge and deep-centre photoluminescence mechanisms of ZnO and GaN”, Solid State Commun. 101, 643 (1997).

    Article  ADS  Google Scholar 

  50. D.C. Reynolds, D.C. Look, B. Jogai, J.E. Van Nostrand, R. Jones, and J. Jenny, “Source of the yellow luminescence band in GaN grown by gas-source molecular beam epitaxy and the green luminescence band in single crystal ZnO”, Solid State Commun. 106, 701 (1998).

    Article  Google Scholar 

  51. A.F. Kohan, G. Ceder, D. Morgan, and C.G. Van de Walle, “First-principles study of native point defects in ZnO”, Phys. Rev. B61, 15019 (2000).

    Article  ADS  Google Scholar 

  52. T. Sekiguchi, N. Ohashi, and Y. Terada, “Effect of hydrogenation on ZnO luminescence”, Jpn. J. Appl. Phys. Part 2 36, L289 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchal Srivastava.

About this article

Cite this article

Srivastava, A., Kumar, N. & Khare, S. Enhancement in UV emission and band gap by Fe doping in ZnO thin films. Opto-Electron. Rev. 22, 68–76 (2014). https://doi.org/10.2478/s11772-014-0179-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-014-0179-x

Key words

Navigation