Skip to main content
Log in

Effects of In and Mg doping on properties of ZnO nanoparticles by flame spray synthesis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The Mg- and In-doped zinc oxide (Mg x Zn1−x O, In y Zn1−y O) nanoparticles were successfully prepared by flame spray synthesis method. According to the results obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis absorption spectra, it was concluded that the Mg or In doping induced the lattice constants to change to some extent; the band gap of Mg x Zn1−x O also increased with respect to the decreasing band gap of In y Zn1−y O. Moreover, the strong UV emission and weak visible emission were investigated by photoluminescence spectra, while the mechanisms of Mg or In doping on PL spectra have been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Assuncao V, Fortunato E, Marques A, Águas H, Ferreira I, Costa MEV, Martins R (2003) Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films 427:401–405

    Article  ADS  CAS  Google Scholar 

  • Bai SN, Tsai HH, Tseng TY (2007) Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method. Thin Solid Films 516:155–158

    Article  ADS  CAS  Google Scholar 

  • Chassaing PM, Demangeot F, Paillard V (2007) Random telegraph signals in n-type ZnO nanowire field effect transistors at low temperature. Appl Phys Lett 91:053107

    Article  ADS  Google Scholar 

  • Damontea LC, Mendoza Ze′lisa LA, Soucase BM (2004) Nanoparticles of ZnO obtained by mechanical milling. Powder Technol 148:15–19

    Article  Google Scholar 

  • Fan HJ, Fuhrmann B, Scholzl R, Himcinschi C, Berger A, Leipner H, Dadgar A, Krost A, Christiansen S, Gösele U, Zacharias M (2006) Vapour-transport-deposition growth of ZnO nanostructures: switch between c-axial wires and a-axial belts by indium doping. Nanotechnology 17:S231–S239

    Article  ADS  CAS  Google Scholar 

  • Femg YJ, Ming LY, Wei LH, Chun LY, Hui LB, Wu FX et al (2005) Growth and properties of ZnO nanotubes grown on Si(1 1 1) substrate by plasma-assisted molecular beam epitaxy. J Cryst Growth 280:206–211. doi:10.1016/j.jcrysgro.2005.03.045

    Article  ADS  Google Scholar 

  • Gruber Th, Kichner C, Kling R, Reuss F, Waag A, Bertram F, Forster D, Christen J, Schreck M (2003) Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy. Appl Phys Lett 83:3290–3292

    Article  ADS  CAS  Google Scholar 

  • Han D, Ren XL, Chen D, Tang FQ, Wang D, Ren J (2005) Preparation and photocatalytic property of ZnO nanoparticles. Photogr Sci Photochem 23:414

    CAS  Google Scholar 

  • Heo YW, Kaufman M, Pruessner K (2003) Optical properties of Zn1−xMgxO nanorods using catalysis-driven molecular beam epitaxy. Solid-State Electron 47:2269–2273

    Article  ADS  CAS  Google Scholar 

  • Hsu HC, Wu CY, Cheng HM, Wang ZY, Zhao JW, Zhang LD (2006) Band gap engineering and stimulated emission of ZnMgO nanowires. Appl Phys Lett 89:013101

    Article  ADS  Google Scholar 

  • Ji Z, Zhao S, Wang C (2005) ZnO nanoparticle films prepared by oxidation of metallic zinc in H2O2 solution and subsequent process. Mater Sci Eng B 117:63–66

    Article  Google Scholar 

  • Jie J, Wang G, Han X, Yu Q, Liao Y, Li G, Hou JG (2004) Indium-doped zinc oxide nanobelts. Chem Phys Lett 387:466–470

    Article  ADS  CAS  Google Scholar 

  • Kammler HK, Mädler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596

    Article  CAS  Google Scholar 

  • Kim KJ, Park YR (2001) Large and abrupt optical band gap variation in In-doped ZnO. Appl Phys Lett 78:475

    Article  ADS  CAS  Google Scholar 

  • Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572. doi:10.1021/jp980730h

    Article  CAS  Google Scholar 

  • Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang ZK, Wong GKL, Matsumoto Y, Koinuma H (2000) Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl Phys Lett 77:2204

    Article  ADS  CAS  Google Scholar 

  • Rajalakshmia M, Arora AK, Bender BS, Mahamuni S (2000) Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys 87:2445

    Article  ADS  Google Scholar 

  • Ramakrishna G, Ghosh HN (2003) Effect of particle size on the reactivity of quantum size ZnO nanoparticles and charge-transfer dynamics with adsorbed catechols. Langmuir 19:3006–3012

    Article  CAS  Google Scholar 

  • Roy VAL, Djurišic AB, Chan WK, Gao J, Lui HF, Surya C (2003) Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl Phys Lett 83:141–143

    Article  ADS  CAS  Google Scholar 

  • Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995) Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. J Chem Eng Jpn 28:288–293

    Article  CAS  Google Scholar 

  • Seo DJ, Park SB, Kang YC (2003) Formation of ZnO, MgO and NiO nanoparticles from aqueous droplets in flame reactor. J Nanopart Res 5:199–210

    Article  CAS  Google Scholar 

  • Tani K, Mädler L, Pratsinis SE (2002) Homogeneous ZnO nanoparticles by flame spray pyrolysis. J Nanopart Res 4:337–343

    Article  CAS  Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200. doi:10.1016/j.jhazmat.2007.12.033

    Article  PubMed  CAS  Google Scholar 

  • Usui H, Shimizu Y, Sasaki T, Koshizaki N (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109:120–124. doi:10.1021/jp046747j

    Article  PubMed  CAS  Google Scholar 

  • van Dijken A, Makkinje J, Meijerink A (2001) The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles. J Lumin 92:323–328

    Article  Google Scholar 

  • Zhao QX, Willander M, Morjan RE, Hu QH, Campbell EEB (2003) Optical recombination of ZnO nanowires grown on sapphire and Si substrates. Appl Phys Lett 83:165–167. doi:10.1063/1.1591069

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erqing Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, Y., Pan, X. et al. Effects of In and Mg doping on properties of ZnO nanoparticles by flame spray synthesis. J Nanopart Res 11, 917–921 (2009). https://doi.org/10.1007/s11051-008-9487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9487-8

Keywords

Navigation