Skip to main content
Log in

Structure analysis of bacterial community and their heavy-metal resistance determinants in the heavy-metal-contaminated soil sample

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

In this study we performed the phylogenetic analysis of non-cultivable bacteria from anthropogenically disturbed soil using partial sequences of the 16S rRNA (16S rDNA) and the heavy-metal resistance genes. This soil sample contained high concentrations of nickel (2,109 mg/kg), cobalt (355 mg/kg) and zinc (177 mg/kg), smaller concentrations of iron (35.75 mg/kg) and copper (32.2 mg/kg), and also a trace amount of cadmium (<0.25 mg/kg). The 16S rDNA sequences from a total of 74 bacterial clones were distributed into four broad taxonomic groups, Acidobacteria, Actinobacteria, Bacteroidetes and Gemmatimonadetes, and some of them were unidentified. Comparing our clone sequences with those from the GenBank database, only 9 clones displayed high similarity to known bacteria belongig to actinomycetes; others were identified as uncultured ones. Among clones evidently Actinobacteria predominated. Sixteen clones from soil sample carried only the nccA-like heavy-metal-resistance genes and all sequences showed too low similarity to known proteins encoded by these genes. However, our results suggested that the heavy-metal-contaminated soil is able to present very important reservoir of the new and until now unknown partly bacteria, partly heavy-metal-resistance determinants and their products. Bacteria and nccA-like genes identified in this study could represent the objects of interest as bioremediation agents because they can be potentially used in different transformation and immobilization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pair

czcA:

heavy-metal-resistance determinant

nccA:

heavy-metal-resistance determinant

PCR:

polymerase chain reaction

References

  • Ashraf R. & Ali T.A. 2007. Effect of heavy metals on soil microbial community and mung beans seed germination. Pak. J. Bot. 39: 629–636.

    Google Scholar 

  • Bamborough L. & Cummings S.P. 2009. The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biol. Fertil. Soils 45: 273–280.

    Article  CAS  Google Scholar 

  • Becker J.M., Parkin T., Nakatsu C.H., Wilbur J.D. & Konopka A. 2006. Bacterial activity, community structure, and centimetre-scale spatial heterogeneity in contaminated soil. Microb. Ecol. 51: 220–231.

    Article  PubMed  Google Scholar 

  • Bogdanova E.S., Bass I.A., Minakhin L.S., Petrova M.A., Mindlin S.Z., Volodin A.A., Kalyaeva E.S., Tiedje J.M., Hobman J.L., Brown N.L. & Nikiforov V.G. 1998. Horizontal spread of mer operons among Gram-positive bacteria in natural environments. Microbiology 144: 609–620.

    Article  PubMed  CAS  Google Scholar 

  • Branco R., Chung A.P., Verissimo A. & Morais P.V. 2005. Impact of chromium-contaminated wastewaters on the microbial community of a river. FEMS Microbiol. Ecol. 54: 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Brim H., Heyndrickx M., de Vos P., Wilmotte A., Springael D., Schlegel H.G. & Mergeay M. 1999. Amplified rDNA restriction analysis and further genotypic characterisation of metalresistant soil bacteria and related facultative hydrogenotrophs. Syst. Appl. Microbiol. 22: 258–268.

    Article  PubMed  CAS  Google Scholar 

  • Chien C., Kuo Y., Chen C., Hung C., Yeh C. & Yeh W. 2008. Microbial diversity of soil bacteria in agricultural field contaminated with heavy metals. J. Environ. Sci. 20: 359–363.

    Article  CAS  Google Scholar 

  • Eichorst S.A., Breznak J.A., Thomas M. & Schmidt T.M. 2007. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73: 2708–2717.

    Article  PubMed  CAS  Google Scholar 

  • Ellis R.J., Morgan P., Weightman A.J. & Fry J.C 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69: 3223–3230.

    Article  PubMed  CAS  Google Scholar 

  • Erbe J.L., Taylor K.B. & Hall L.M. 1995. Metalloregulation of the cyanobacterial smt locus: identification of SmtB binding sites and direct interaction with metals. Nucleic Acids Res. 23: 2472–2478.

    Article  PubMed  CAS  Google Scholar 

  • Frey B., Stemmer M., Widmer F., Luster J.C. & Sperisen C. 2006. Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biol. Biochem. 38: 1745–1756.

    Article  CAS  Google Scholar 

  • Gremion F., Chatzinotas A. & Harms H. 2003. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ. Microbiol. 5: 896–907.

    Article  PubMed  CAS  Google Scholar 

  • Holmes A.J., Bowyer J., Holley M.P., O’Donoghue M., Montgomery M. & Gillings M.R. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol. Ecol. 33: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3: reviewsS0003.

  • Ji G. & Silver S. 1992. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174: 3684–3694.

    PubMed  CAS  Google Scholar 

  • Kandeler E., Tscherko D., Bruce K.D., Stemmer M., Hobbs P.J., Bardgett R.D. & Amelung W. 2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol. Fertil. Soils 32: 390–400.

    Article  CAS  Google Scholar 

  • Karelová E., Harichová J., Stojnev T., Pangallo D. & Ferianc P. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metalcontaminated site. Biologia 66: 18–26.

    Article  Google Scholar 

  • Kersters K., de Vos P., Gillis M., Swings J., Vandamme P. & Stackebrandt E. 2006. Introduction to the Proteobacteria, pp. 3–37. In: Dwarkin M., Falkow S., Rosenberg E., Schleifer K.H. & Stackebrandt E. (eds), The Prokaryotes, 3rd Edn, vol. 5, Springer, New York.

    Chapter  Google Scholar 

  • Khan S., Hesham A.E.L., Qiao M., Rehman S. & He J.Z. 2010. Effect of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Polut. Res. 17: 288–296.

    Article  CAS  Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kozdroj J. & van Elsas J.D. 2001. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J. Microbiol. Methods 43: 197–212.

    Article  PubMed  CAS  Google Scholar 

  • Lane D.J. 1991. 16S/23S rRNA sequencing, pp. 115–148. In: Stackebrandt E. & Goodfellow M. (eds), Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons, New York.

    Google Scholar 

  • Liu H.Y., Probs A. & Liao B. 2005. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 339: 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M., Monchy S., Vallaeys T., Auquier V., Benotmane A., Bertin P., Taghavi S., Dunn J., Van Der Lelie D. & Wattiez R. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385–410.

    Article  PubMed  CAS  Google Scholar 

  • Mobley H.L., Chen C.M., Silver S. & Rosen B.P. 1983. Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli. Mol. Gen. Genet. 191: 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Nascimento A.M.A. & Chartone-Souza E. 2003. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2: 92–101.

    PubMed  Google Scholar 

  • Nies D.H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730–750.

    Article  PubMed  CAS  Google Scholar 

  • Ogilvie L.A. & Grant A. 2008. Linking pollution induced community tolerance (PICT) and microbial community structure in chronically metal polluted estuarine sediments. Mar. Environ. Res. 65: 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Page R.D.M. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Applic. Biosci. 12: 357–358.

    CAS  Google Scholar 

  • Pazirandeh M., Wells B. & Ryan R.L. 1998. Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl. Environ. Microbiol. 64: 4068–4072.

    PubMed  CAS  Google Scholar 

  • Pechrada J., Sajjaphan K. & Sadowsky M.J. 2010. Structure and diversity of arsenic-resistant bacteria in an old tin mine area of Thailand. J. Microbiol. Biotechnol. 20: 169–178.

    Google Scholar 

  • Ranjard L., Brothier E. & Nazaret S. 2000. Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl. Environ. Microbiol. 66: 5334–5339.

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L., Lignier L. & Chaussod R. 2006. Cumulative effect of short-term polymetal contamination on soil bacterial community structure. Appl. Environ. Microbiol. 72: 1684–1687.

    Article  PubMed  CAS  Google Scholar 

  • Rosenstein R., Peschel A., Wieland B. & Götz F. 1992. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J. Bacteriol. 174: 3676–3683.

    PubMed  CAS  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Saltikov C.W. & Olson B.H. 2002. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl. Environ. Microbiol. 68: 280–288.

    Article  PubMed  CAS  Google Scholar 

  • Sandaa R.A., Torsvik V. & Enger Ø. 2001. Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol. Biochem. 33: 287–295.

    Article  CAS  Google Scholar 

  • Sandaa R.A., Torsvik V., Enger Ø., Daae F.L., Castberg T. & Hahn D. 2006. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol. Ecol. 30: 237–251.

    Article  Google Scholar 

  • Sandrin T.R., Chech A.M. & Maier R.M. 2000. A rhamnolipid biosurfactant reduces cadmium toxicity during biodegradation of naphthalene. Appl. Environ. Microbiol. 66: 4585–4588.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T. & Schlegel H.G. 1994. Combined nickel-cobaltcadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 176: 7045–7054.

    PubMed  CAS  Google Scholar 

  • Silver S. & Phung L.T. 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50: 753–789.

    Article  PubMed  CAS  Google Scholar 

  • Sobolev D. & Begonia M.F.T. 2008. Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int. J. Environ. Res. Public Health 5: 450–456.

    Article  PubMed  CAS  Google Scholar 

  • Sun L.N., Zhang Y.F., He L.Y., Chen Z.J., Wang Q.Y., Qian M. & Sheng X.F. 2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Biores. Technol. 101: 501–509.

    Article  CAS  Google Scholar 

  • Štursa P., Uhlík O., Kurzawová V., Koubek J., Ionescu M., Strohalm M., Lovecká P., Macek T. & Macková M. 2009. Approaches for diversity analysis of cultivable and noncultivable bacteria in real soil. Plant Soil Environ. 55: 389–396.

    Google Scholar 

  • Takaichi S., Maoka T., Takasaki K. & Hanada S. 2010. Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes): identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2,29-dirhamnoside. Microbiology 156: 757–763.

    Article  PubMed  CAS  Google Scholar 

  • Thiyagarajan V., Lau S., Tsoi M., Zhang W. & Qian P.Y. 2010. Monitoring bacterial biodiversity in surface sediment using terminal restriction fragment length polymorphism analysis (T-RFLP): application to coastal environment, pp. 151–163. In: Ishimatsu A. & Lie H.J. (eds), Coastal Environmental and Ecosystem Issues of the East China Sea, Terrapub & Nagasaki University.

  • Vivas A., Moreno B., del Val C., Macci C., Masciandaroc G. & Benitez E. 2008. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J. Environ. Monit. 10: 1287–1296.

    Article  PubMed  CAS  Google Scholar 

  • Wu H., Zhao H., Wen C., Guo Y., Guo J., Xu M. & Li X. 2012. A comparative study of bacterial community structures in the sediments from brominated flame retardants contaminated river and non-contaminated reservoir. Afr. J. Microbiol. Res. 6: 3248–3260.

    CAS  Google Scholar 

  • Wuertz S. & Mergeay M. 1997. The impact of heavy metals on soil microbial communities and their activities, pp. 607–642. In: Van Elsas J.D., Trevors J.T. & Wellington E.M.H. (eds), Modern Soil Microbiology, Marcel Dekker, New York.

    Google Scholar 

  • Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y. & Nakamura K. 2003. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Microbiol. 53: 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H.B., Yang M.X., Shi W., Zheng Y., Tao T. & Zhao Z.W. 2007. Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microbial. Ecol. 54: 705–712.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ferianc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harichová, J., Karelová, E., Pangallo, D. et al. Structure analysis of bacterial community and their heavy-metal resistance determinants in the heavy-metal-contaminated soil sample. Biologia 67, 1038–1048 (2012). https://doi.org/10.2478/s11756-012-0123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0123-9

Key words

Navigation