Skip to main content
Log in

Spatial heterogeneity of bacterial community structure in the sediments of the Pearl River estuary

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analytical methods were applied to investigate the spatial variation of bacterial community structure in the Pearl River estuary sediment and to address the relationship between microbial community composition and bottom water chemistry in ten different stations. Preliminary results of sequencing analysis of the excised DGGE bands suggested that α-Proteobacteria, γ-Proteobacteria, Acidobacteria and Actinobacteria were the dominant bacterial groups in the Pearl River estuary sediment. Results of multidimensional scaling analysis of these field data suggested that the composition of bacterial communities varied with sampling sites. Finally, canonical correspondence analysis of the data of environmental variables and bacterial community suggested that bacterial community structure was significantly influenced by the change of environmental variables (total phosphorus, nitrite, ammonium, dissolved oxygen, pH and salinity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCA:

canonical correspondence analysis

DGGE:

denaturing gradient gel electrophoresis

DO:

dissolved oxygen

MDSA:

multidimensional scaling analysis

TN:

total nitrogen

TP:

total phosphorus

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Arzayus K. & Canuel E. 2005. Organic matter degradation in sediments of the York River estuary: effects of biological vs. physical mixing. Geochim. Cosmochim. Acta 69: 455–464.

    Article  CAS  Google Scholar 

  • Barns S.M., Takala S.L. & Kuske C.R. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. Microbiol. 65: 1731–1737.

    PubMed  CAS  Google Scholar 

  • Beman J.M. & Francis C.A. 2006. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl. Environ. Microbiol. 72: 7767–7777.

    Article  PubMed  CAS  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2010. GenBank. Nucleic Acids Res. 38: D46–D51.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard A.E., Donn T. Giblin A.E. & Stahl D.A. 2005. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ. Microbiol. 7: 1289–1297.

    Article  PubMed  CAS  Google Scholar 

  • Binnerup S.J., Jensen K., Revsbech N.P., Jensen M.H. & Sorensen J. 1992. Denitrification, dissimilatory reduction of nitrate to ammonium, and nitrification in a bioturbated estuarine sediment as measured with 15N and microsensor techniques. Appl. Environ. Microbiol. 58: 303–313.

    PubMed  CAS  Google Scholar 

  • Bostrm B., Andersen J.M., Fleischer S. & Jansson M. 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.

    Article  Google Scholar 

  • Colwell F., Matsumoto R. & Reed D. 2004. A review of the gas hydrates, geology, and biology of the Nankai Trough. Chem. Geol. 205: 391–404.

    Article  CAS  Google Scholar 

  • Crump B.C., Armbrust E. & Baross J.A. 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 65: 3192–3204.

    PubMed  CAS  Google Scholar 

  • Davies C.E., Hill K.E., Wilson M.J., Stephens P., Hill C.M., Harding K.G. & Thomas D.W. 2004. Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J. Clin. Microbiol. 42: 3549–3557.

    Article  PubMed  CAS  Google Scholar 

  • De Corte D., Yokokawa T., Varela M.M., Agogué H. & Herndl G.J. 2008. Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME J. 3: 147–158.

    Article  PubMed  Google Scholar 

  • Eggleton J. & Thomas K. 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int. 30: 973–980.

    Article  PubMed  CAS  Google Scholar 

  • Freitag T.E., Chang L. & Prosser J.I. 2006. Changes in the community structure and activity of β-proteobacterial ammoniaoxidizing sediment bacteria along a freshwater-marine gradient. Environ. Microbiol. 8: 684–696.

    Article  PubMed  CAS  Google Scholar 

  • Fu J., Mai B., Sheng G., Zhang G., Wang X., Peng P., Xiao X., Ran R., Cheng F. & Peng X. 2003. Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere 52: 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  • Garrity G., Johnson K.L., Bell J.A. & Searles D.B. 2002. Taxonomic Outline of the Procaryotes. Bergey’s Manual of Systematic Bacteriology, 2nd Ed., Springer-Verlag, New York.

    Google Scholar 

  • Giovannoni S.J., Britschgi T.B., Moyer C.L. & Field K.G. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Gontang E.A., Fenical W. & Jensen P.R. 2007. Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl. Environ. Microbiol. 73: 3272–3782.

    Article  PubMed  CAS  Google Scholar 

  • Haukka K., Kolmonen E., Hyder R., Hietala J., Vakkilainen K., Kairesalo T., Haario H. & Sivonen K. 2006. Effect of nutrient loading on bacterioplankton community composition in lake mesocosms. Microb. Ecol. 51: 137–146.

    Article  PubMed  Google Scholar 

  • Hewson I. & Fuhrman J.A. 2004. Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl. Environ. Microbiol. 70: 3425–3433.

    Article  PubMed  CAS  Google Scholar 

  • Hewson I. & Fuhrman J.A. 2006. Spatial and vertical biogeography of coral reef sediment bacterial and diazotroph communities. Mar. Ecol. Prog. Ser. 306: 79–86.

    Article  CAS  Google Scholar 

  • Hollander D.J. & Smith M.A. 2001. Microbially mediated carbon cycling as a control on the δ 13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochim. Cosmochim. Acta. 65: 4321–4337.

    Article  CAS  Google Scholar 

  • Howarth R.W. 1988. Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 19: 89–110.

    Article  Google Scholar 

  • Howarth R.W. & Marino R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51: 364–376.

    Article  CAS  Google Scholar 

  • Janssen P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719–1728.

    Article  PubMed  CAS  Google Scholar 

  • Jay D. & Musiak J. 1994. Particle trapping in estuarine tidal flows. J. Geophys. Res. 99: 20445–20461.

    Article  Google Scholar 

  • Jorgensen N.O.G., Kroer N. & Coffin R.B. 1994. Utilization of dissolved nitrogen by heterotrophic bacterioplankton: effect of substrate C/N ratio. Appl. Environ. Microbiol. 60: 4124–4133.

    PubMed  CAS  Google Scholar 

  • King J.K., Kostka J.E., Frischer M.E. & Saunders F.M. 2000. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl. Environ. Microbiol. 66: 2430–2437.

    Article  PubMed  CAS  Google Scholar 

  • Kirchman D., Moss J. & Keil R. 1992. Nitrate uptake by heterotrophic bacteria: does it change the f-ratio. Ergeb. Limnol./ Adv. Limnol. 37: 129–138.

    CAS  Google Scholar 

  • Koizumi Y., Kojima H. & Fukui M. 2003. Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments. FEMS Microbiol. Ecol. 46:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Nei M., Dudley J. & Tamura K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Mai B., Fu J., Sheng G., Kang Y., Lin Z., Zhang G., Min Y. & Zeng E. 2002. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ. Pollut. 117: 457–474.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer R., Krom M., Watson P., Frickers P., Davey J. & Clifton R. 1999. Sediment-water exchange of nutrients in the intertidal zone of the Humber Estuary, UK. Mar. Pollut. Bull. 37: 261–279.

    Article  Google Scholar 

  • Muckian L., Grant R., Doyle E. & Clipson N. 2007. Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons. Chemosphere 68: 1535–1541.

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G., de Waal E.C. & Uitterlinden A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695–700.

    PubMed  CAS  Google Scholar 

  • Muyzer G. & Ramsing N. 1995. Molecular methods to study the organization of microbial communities. Water Sci. Technol. 32: 1–9.

    CAS  Google Scholar 

  • Muyzer G. & Smalla K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127–141.

    Article  PubMed  CAS  Google Scholar 

  • Ogier J., Son O., Gruss A., Tailliez P. & Delacroix-Buchet A. 2002. Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 68: 3691–3701.

    Article  PubMed  CAS  Google Scholar 

  • Paster B., Ludwig W., Weisburg W., Stackebrandt E., Hespell R., Hahn C., Reichenbach H., Stetter K. & Woese C. 1985. A phylogenetic grouping of the Bacteroides, Cytophagas, and certain flavobacteria. Syst. Appl. Microbiol. 6: 34–42.

    CAS  Google Scholar 

  • Pernthaler A., Pernthaler J. & Amann R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68: 3094–3101.

    Article  PubMed  CAS  Google Scholar 

  • Pimenov N., Ulyanova M., Kanapatsky T., Veslopolova E., Sigalevich P. & Sivkov V. 2010. Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdansk Basin, Baltic Sea. Geo-Mar. Lett. 30: 439–448.

    Article  CAS  Google Scholar 

  • Pinckney J.L., Paerl H.W., Tester P. & Richardson T.L. 2001. The role of nutrient loading and eutrophication in estuarine ecology. Environ. Health Perspect. 109(Suppl. 5): 699–706.

    Article  PubMed  CAS  Google Scholar 

  • Rooney-Varga J., Giewat M., Savin M., Sood S., LeGresley M. & Martin J. 2005. Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb. Ecol. 49: 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Rossello-Mora R., Thamdrup B., Schäfer H., Weller R. & Amann R. 1999. The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Syst. Appl. Microbiol. 22: 237–248.

    PubMed  CAS  Google Scholar 

  • Sahm K., MacGregor B., Jrgensen B. & Stahl D. 2001. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ. Microbiol. 1: 65–74.

    Article  Google Scholar 

  • Scala D.J. & Kerkhof L.J. 2000. Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Appl. Environ. Microbiol. 66: 1980–1986.

    Article  PubMed  CAS  Google Scholar 

  • Sinsabaugh R. & Findlay S. 1995. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microb. Ecol. 30: 127–141.

    Article  CAS  Google Scholar 

  • Stepanauskas R., Moran M., Bergamaschi B. & Hollibaugh J. 2003. Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat. Microb. Ecol. 31: 85–98.

    Article  Google Scholar 

  • Suzuki M. & Giovannoni S. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625–630.

    PubMed  CAS  Google Scholar 

  • Van Duyl F.C., Van Raaphorst W. & Kop A.J. 1993. Benthic bacterial production and nutrient sediment-water exchange in sandy North Sea sediments. Mar. Ecol. Prog. Ser. 100: 85–85.

    Article  Google Scholar 

  • Wang Y.S., Lou Z.P., Sun C.C. & Sun S. 2008. Ecological environment changes in Daya Bay, China, from 1982 to 2004. Mar. Pollut. Bull. 56: 1871–1879.

    Article  PubMed  CAS  Google Scholar 

  • Ward A. & Bora N. 2006. Diversity and biogeography of marine actinobacteria. Curr. Opin. Microbiol. 9: 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Yannarell A. & Triplett E. 2005. Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71: 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Yokokawa T. & Nagata T. 2010. Linking bacterial community structure to carbon fluxes in marine environments. J. Oceanogr. 66: 1–12.

    Article  CAS  Google Scholar 

  • Zhang G., Parker A., House A., Mai B., Li X., Kang Y. & Wang Z. 2002. Sedimentary records of DDT and HCH in the Pearl River Delta, South China. Environ. Sci. Technol. 36: 3671–3677.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L., Yin K.D., Wang L., Chen F.R., Zhang D.R. & Yang Y.Q. 2009. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China. Estuar. Coast. Shelf Sci. 85: 190–196.

    Article  CAS  Google Scholar 

  • Zweifel U.L., Norrman B. & Hagstrom A. 1993. Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients. Mar. Ecol. Prog. Ser. 101: 23–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Shao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, FL., Wang, YS., Wu, ML. et al. Spatial heterogeneity of bacterial community structure in the sediments of the Pearl River estuary. Biologia 66, 574–584 (2011). https://doi.org/10.2478/s11756-011-0066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0066-6

Key words

Navigation