Skip to main content

Advertisement

Log in

Linking bacterial community structure to carbon fluxes in marine environments

  • Review
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Microbial oceanography is undergoing a dramatic revolution thanks to the rapid development of novel techniques that allow the examination of microbial diversity and functions via molecular methods, including genomic and metagenomic analyses. During the past decade, studies have revealed previously unknown and surprisingly diverse bacterial communities in marine waters. These studies have radically changed our understanding of spatiotemporal patterns in marine bacterial community composition and the distribution of specific genes. However, our knowledge of the role of individual bacterial subgroups in oceanic food webs and biogeochemical cycles remains limited. To embed the internal dynamics of bacterial communities into marine biogeochemistry models, the characteristic parameters of individual bacterial subgroups (i.e., growth, mortality, and utilization of dissolved organic matter) must be determined. Here, we survey the approaches used to assess variation in and factors controlling bacterial communities in marine environments, emphasizing the importance of quantitative studies that examine growth and grazing parameters of bacterial subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, N. A., G. Rocap and S. W. Chisholm (2006): Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ. Microbiol., 8, 441–454.

    Article  Google Scholar 

  • Alonso-Saez, L. and J. M. Gasol (2007): Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters. Appl. Environ. Microbiol., 73, 3528–3535.

    Article  Google Scholar 

  • Amann, R. and B. M. Fuchs (2008): Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Rev. Microbiol., 6, 339–348.

    Article  Google Scholar 

  • Azam, F. and A. Z. Worden (2004): Microbes, molecules, and marine ecosystems. Science, 303, 1622–1624.

    Article  Google Scholar 

  • Behrens, S., T. Lösekann, J. Pett-Ridge, P. K. Weber, W. O. Ng, B. S. Stevenson, I. D. Hutcheon, D. A. Relman and A. M. Spormann (2008): Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl. Environ. Microbiol., 74, 3143–3150.

    Article  Google Scholar 

  • Béjà, O. and M. T. Suzuki (2008): Photoheterotrophic marine prokaryotes. p. 131–157. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey.

    Google Scholar 

  • Béjà, O., E. V. Koonin and M. T. Suzuki (2000): Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science, 289, 1902–1906.

    Article  Google Scholar 

  • Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp and D. L. Wheeler (2002): GenBank. Nucleic Acids Res., 30, 17–20.

    Article  Google Scholar 

  • Bouvier, T. C. and P. A. del Giorgio (2002): Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol. Oceanogr., 47, 453–470.

    Google Scholar 

  • Bouvier, T. and P. A. del Giorgio (2007): Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ. Microbiol., 9, 287–297.

    Article  Google Scholar 

  • Breitbart, M., M. Middelboe and F. Rohwer (2008): Marine viruses: community dynamics, diversity and impact on microbial processes. p. 443–479. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey.

    Google Scholar 

  • Brown, M. V., M. S. Schwalbach, I. Hewson and J. A. Fuhrman (2005): Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ. Microbiol., 7, 1466–1479.

    Article  Google Scholar 

  • Church, M. J. (2008): Resource control of bacterial dynamics in the sea. p. 335–382. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey.

    Google Scholar 

  • Church, M. J., E. F. DeLong, H. W. Ducklow, M. B. Karner, C. M. Preston and D. M. Karl (2003): Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol. Oceanogr., 48, 1893–1902.

    Google Scholar 

  • Cohan, F. M. (2002): What are bacterial species? Annu. Rev. Microbiol., 56, 457–487.

    Article  Google Scholar 

  • Cottrell, M. T. and D. L. Kirchman (2000): Natural assemblages of marine proteobacteria and members of the Cytophaga- Flavobacter cluster consuming low- and high-molecularweight dissolved organic matter. Appl. Environ. Microbiol., 66, 1692–1697.

    Article  Google Scholar 

  • Cottrell, M. T. and D. L. Kirchman (2003): Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol. Oceanogr., 48, 168–178.

    Article  Google Scholar 

  • Cottrell, M. T. and D. L. Kirchman (2004): Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat. Microb. Ecol., 34, 139–149.

    Article  Google Scholar 

  • DeLong, E. F. (1992): Archaea in coastal marine environments. Proc. Nat. Acad. Sci. USA, 89, 5685–5689.

    Article  Google Scholar 

  • DeLong, E. F. (2009): The microbial ocean from genomes to biomes. Nature, 459, 200–206.

    Article  Google Scholar 

  • DeLong, E. F. and D. M. Karl (2005): Genomic perspectives in microbial oceanography. Nature, 437, 336–342.

    Article  Google Scholar 

  • DeLong, E. F., C. M. Preston, T. Mincer, V. Rich, S. J. Hallam, N. U. Frigaard, A. Martinez, M. B. Sullivan, R. Edwards, B. R. Brito, S. W. Chisholm and D. M. Karl (2006): Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311, 496–503.

    Article  Google Scholar 

  • Dinsdale, E. A., R. A. Edwards, D. Hall, F. Angly, M. Breitbart, J. M. Brulc, M. Furlan, C. Desnues, M. Haynes, L. Li, L. McDaniel, M. A. Moran, K. E. Nelson, C. Nilsson, R. Olson, J. Paul, B. R. Brito, Y. Ruan, B. K. Swan, R. Stevens, D. L. Valentine, R. V. Thurber, L. Wegley, B. A. White and F. Rohwer (2008): Functional metagenomic profiling of nine biomes. Nature, 452, 629–632.

    Article  Google Scholar 

  • Ducklow, H. W. (2000): Bacterial production and biomass in the oceans. p. 85–120. In Microbial Ecology of the Oceans, 1st ed., ed. by D. L. Kirchman, Wiley-Liss, New York.

    Google Scholar 

  • Follows, M. J., S Dutkiewicz, S. Grant and S. W. Chisholm (2007): Emergent biogeography of microbial communities in a model ocean. Nature, 315, 1843–1846.

    Google Scholar 

  • Fuhrman, J. A. (1999): Marine viruses and their biogeochemical and ecological effects. Nature, 399, 541–548.

    Article  Google Scholar 

  • Fuhrman, J. A. (2009): Microbial community structure and its functional implications. Nature, 459, 193–199.

    Article  Google Scholar 

  • Fuhrman J. A. and Å. Hagström (2008). Bacterial and Archaeal community structure and its patterns. p. 45–90. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey.

    Google Scholar 

  • Fuhrman, J. A., K. McCallum and A. A. Davis (1992): Novel major archaebacterial group from marine plankton. Nature, 356, 148–149.

    Article  Google Scholar 

  • Fukuda, R., H. Ogawa, T. Nagata and I. Koike (1998): Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol., 64, 3352–3358.

    Google Scholar 

  • Giovannoni, S. J. and U. Stingl (2005): Molecular diversity and ecology of microbial plankton. Nature, 437, 343–348.

    Article  Google Scholar 

  • Giovannoni, S. J. and U. Stingl (2007): The importance of culturing bacterioplankton in the “omics”age. Natl. Rev. Microbiol., 5, 820–826.

    Article  Google Scholar 

  • Giovannoni, S. J., T. B. Britschgi, C. L. Moyer and K. G. Field (1990): Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345, 60–63.

    Article  Google Scholar 

  • Giovannoni, S. J., H. J. Tripp, S. Givan, M. Podar, K. L. Vergin, D. Baptista, L. Bibbs, J. Eads, T. H. Richardson, M. Noordewier, M. S. Rappé, J. M. Short, J. C. Carrington and E. J. Mathur (2005): Genome streamlining in a cosmopolitan oceanic bacterium. Science, 309, 1242–1245.

    Article  Google Scholar 

  • Glöckner, F. O., B. M. Fuchs and R. Amann (1999): Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol., 65, 3721–3726.

    Google Scholar 

  • González, J. M. and M. A. Moran (1997): Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol., 63, 4237–4242.

    Google Scholar 

  • Grossart, H. P., F. Levold, M. Allgaier, M. Simon and T. Brinkhoff (2005): Marine diatom species harbour distinct bacterial communities. Environ. Microbiol., 7, 860–873.

    Article  Google Scholar 

  • Hamasaki, K., R. A. Long and F. Azam (2004): Individual cell growth rates of marine bacteria, measured by bromodeoxyuridine incorporation. Aquat. Microb. Ecol., 35, 217–227.

    Article  Google Scholar 

  • Hobbie, J. E., R. J. Daley and S. Jasper (1977): Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol., 33, 1225–1228.

    Google Scholar 

  • Huang, W. E., K. Stoecker, R. Griffiths, L. Newbold, H. Daims, A. S. Whiteley and M. Wagner (2007): Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol., 9, 1878–1889.

    Article  Google Scholar 

  • Johnson, Z. I., E. R. Zinser, A. Coe, N. P. McNulty, E. M. Woodward and S. W. Chisholm (2006): Niche partitioning among Prochloroccus ecotyps along ocean-scale environmental gradients. Science, 311, 1737–1740.

    Article  Google Scholar 

  • Jürgens, K. and R. Massana (2008): Protistan grazing on marine bacterioplankton. p. 383–441. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley- Blackwell, New Jersey.

    Google Scholar 

  • Karner, M. B., E. F. DeLong and D. M. Karl (2001): Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507–510.

    Article  Google Scholar 

  • Kenzaka, T., S. Takami, N. Yamaguchi, K. Tani and M. Nasu (2005): Recognition of individual genes in diverse microorganisms by cycling primed in situ amplification. Appl. Environ. Microbiol., 71, 7236–7244.

    Article  Google Scholar 

  • Kirchman, D. L. (2000): Uptake and regulation of inorganic nutrients by marine heterotrophic bacteria. p. 261–288. In Microbial Ecology of the Oceans, 1st ed., ed. by D. L. Kirchman, Wiley-Liss, New York.

    Google Scholar 

  • Kirchman, D. L., A. I. Dittel, R. R. Malmstrom and M. T. Cottrell (2005): Biogeography of major bacterial groups in the Delaware Estuary. Limnol. Oceanogr., 50, 1697–1706.

    Article  Google Scholar 

  • Kirchman, D. L., H. Elifantz, A. I. Dittel, R. R. Malmstrom and M. T. Cottrell (2007): Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol. Oceanogr., 52, 495–507.

    Article  Google Scholar 

  • Kogure, K., U. Simidu and N. Taga (1979): Tentative direct microscopic method for counting living marine-bacteria. Can. J. Microbiol., 25, 415–420.

    Article  Google Scholar 

  • Lebaron, P., P. Servais, M. Troussellier, C. Courties, G. Muyzer, L. Bernard, H. Schafer, R. Pukall, E. Stackebrandt, T. Guindulain and J. Vives-Rego (2001): Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. FEMS Microbiol. Ecol., 34, 255–266.

    Article  Google Scholar 

  • Madigan, M. T., J. M. Martinko and J. Parker (2000): Brock Biology of Microorganisms. Ninth ed., Prentice-Hall, New York.

    Google Scholar 

  • Malmstrom, R. R., M. T. Cottrell, H. Elifantz and D. L. Kirchman (2005): Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean. Appl. Environ. Microbiol., 71, 2979–2986.

    Article  Google Scholar 

  • Maruyama, F., T. Kenzaka, N. Yamaguchi, K. Tani and M. Nasu (2005): Visualization and enumeration of bacteria carrying a specific gene sequence by in situ rolling circle amplification. Appl. Environ. Microbiol., 71, 7933–7940.

    Article  Google Scholar 

  • Middelboe, M. (2000): Bacterial growth rate and marine virushost dynamics. Microb. Ecol., 40, 114–124.

    Google Scholar 

  • Miki, T., T. Nakazawa, T. Yokokawa and T. Nagata (2008a): Functional consequences of viral impacts on bacterial communities: a food-web model analysis. Freshwater Biol., 53, 1142–1153.

    Article  Google Scholar 

  • Miki, T., T. Yokokawa, T. Nagata and N. Yamamura (2008b): Immigration of prokaryotes to local environments enhances remineralization efficiency of sinking particles: a metacommunity model. Mar. Ecol. Prog. Ser., 366, 1–14.

    Article  Google Scholar 

  • Miki, T., L. Giuggioli, Y. Kobayashi, T. Nagata and S. A. Levin (2009): Vertically structured prokaryotic community can control the efficiency of the biological pump in the oceans. Theor. Ecol., doi:10.1007/s12080-009-0042-8.

  • Moran, M. A. (2008): Genomics and metagenomics of marine prokaryotes. p. 91–129. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey.

    Google Scholar 

  • Morris, R. M., M. S. Rappe, S. A. Connon, K. L. Vergin, W. A. Siebold, C. A. Carlson and S. J. Giovannoni (2002): SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 420, 806–810.

    Article  Google Scholar 

  • Motegi, C. and T. Nagata (2007): Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific. Aquat. Microb. Ecol., 48, 27–34.

    Article  Google Scholar 

  • Motegi, C., T. Nagata, T. Miki, M. C. Weinbauer, L. Legendre and F. Rassoulzadegan (2009): Viral control of bacterial growth efficiency in marine pelagic environments. Limnol. Oceanogr., 54, 1901–1910.

    Google Scholar 

  • Nagata, T. (2008): Organic matter-bacteria interactions in seawater. p. 207–241. In Microbial Ecology of the Oceans, 2nd ed., ed. by D. L. Kirchman, Wiley-Blackwell, New Jersey.

    Google Scholar 

  • Nagata, T., R. Fukuda, H. Fukuda and I. Koike (2001): Basinscale geographic patterns of bacterioplankton biomass and production in the subarctic Pacific, July-September 1997. J. Oceanogr., 57, 301–313.

    Article  Google Scholar 

  • Nishimura, Y. and T. Nagata (2007): Alphaproteobacterial dominance in a large mesotrophic lake (Lake Biwa, Japan). Aquat. Microb. Ecol., 49, 231–240.

    Article  Google Scholar 

  • Nocker, A., M. Burr and A. K. Camper (2007): Genotypic microbial community profiling: A critical technical review. Microb. Ecol., 54, 276–289.

    Article  Google Scholar 

  • Norland, S., M. Heldal and O. Tumyr (1987): On the relation between dry-matter and volume of bacteria. Microb. Ecol., 13, 95–101.

    Article  Google Scholar 

  • Pace, N. R. (1997): A molecular view of microbial diversity and the biosphere. Science, 276, 734–740.

    Article  Google Scholar 

  • Pernthaler, J. (2005): Predation on prokaryotes in the water column and its ecological implications. Natl. Rev. Microbiol., 3, 537–546.

    Article  Google Scholar 

  • Pernthaler, J., A. Alfreider, T. Posch, S. Andreatta and R. Psenner (1997): In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenkollesee, Austria). Appl. Environ. Microbiol., 63, 4778–4783.

    Google Scholar 

  • Pommier, T., B. Canbäck, L. Riemann, K. H. Boström, K. Simu, P. Lundberg, A. Tunlid and Å. Hagström (2007): Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol., 16, 867–880.

    Article  Google Scholar 

  • Posch, T., J. Franzoi, M. Prader and M. M. Salcher (2009): New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquat. Microb. Ecol., 54, 113–126.

    Article  Google Scholar 

  • Rappé, M. S., S. A. Connon, K. L. Vergin and S. J. Giovannoni (2002): Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature, 418, 630–633.

    Article  Google Scholar 

  • Selje, N. and M. Simon (2003): Composition and dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany. Aquat. Microb. Ecol., 30, 221–237.

    Article  Google Scholar 

  • Selje, N., M. Simon and T. Brinkhoff (2004): A newly discovered Roseobacter cluster in temperate and polar oceans. Nature, 427, 445–448.

    Article  Google Scholar 

  • Simon, M., H. P. Grossart, B. Schweitzer and H. Ploug (2002): Microbial ecology of organic aggregates in aquatic systems. Aquat. Microb. Ecol., 28, 175–211.

    Article  Google Scholar 

  • Sogin, M. L., H. G. Morrison, J. A. Huber, D. M. Welch, S. M. Huse, P. R. Neal, J. M. Arrieta and G. J. Herndl (2006): Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci., 103, 12115–12120.

    Article  Google Scholar 

  • Stahl, D. A., B. Flesher, H. R. Mansfield and L. Montgomery (1988): Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol., 54, 1079–1084.

    Google Scholar 

  • Suzuki, M. T. and E. F. DeLong (2002): Marine prokaryote diversity. p. 209–234. In Biodiversity of Microbial Life, ed. by J. T. Staley and A. L. Reysenbach, Wiley-Liss, New York.

    Google Scholar 

  • Suzuki, M. T. and S. J. Giovannoni (1996): Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol., 62, 625–630.

    Google Scholar 

  • Suzuki, M. T., C. M. Preston, F. P. Chavez and E. F. DeLong (2001): Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquat. Microb. Ecol., 24, 117–127.

    Article  Google Scholar 

  • Teira, E., T. Reinthaler, A. Pernthaler, J. Pernthaler and G. J. Herndl (2004): Combining catalyzed reporter depositionfluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl. Environ. Microbiol., 70, 4411–4414.

    Article  Google Scholar 

  • Teira, E., H. van Aken, C. Veth and G. J. Herndl (2006): Archaeal uptake of enantiomeric amino acids in the mesoand bathypelagic waters of the North Atlantic. Limnol. Oceanogr., 51, 60–69.

    Article  Google Scholar 

  • Thingstad, T. F. (2000): Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr., 45, 1320–1328.

    Article  Google Scholar 

  • Thingstad, T. F. and R Lignell (1997): Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol., 13, 19–27.

    Article  Google Scholar 

  • Varela, M. M., H. M. van Aken and G. J. Herndl (2008): Abundance and activity of Chloroflexi-type SAR202 bacterioplankton in the meso- and bathypelagic waters of the (sub) tropical Atlantic. Environ. Microbiol., 10, 1903–1911.

    Article  Google Scholar 

  • Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulse, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hpffma, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers and H. O. Smith (2004): Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.

    Article  Google Scholar 

  • Warnecke, F., R. Sommaruga, R. Sekar, J. S. Hofer and J. Pernthaler (2005): Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl. Environ. Microbiol., 71, 5551–5559.

    Article  Google Scholar 

  • Woese, C. R. (1987): Bacterial evolution. Microbiol. Rev., 51, 221–271.

    Google Scholar 

  • Yokokawa, T. (2004): Growth and grazing mortality of phylogenetically distinct bacterial groups in estuarine and coastal marine environments. Ph.D. thesis, Kyoto University, Japan.

    Google Scholar 

  • Yokokawa, T. and T. Nagata (2005): Growth and grazing mortality rates of phylogenetic groups of bacterioplankton in coastal marine environments. Appl. Environ. Microbiol., 71, 6799–6807.

    Article  Google Scholar 

  • Yokokawa, T., T. Nagata, M. T. Cottrell and D. L. Kirchman (2004): Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol. Oceanogr., 49, 1620–1629.

    Article  Google Scholar 

  • Zhang, Y., N. Z. Jiao, M. T. Cottrell and D. L. Kirchman (2006): Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea. Aquat. Microb. Ecol., 43, 233–241.

    Article  Google Scholar 

  • Zubkov, M. V., B. M. Fuchs, P. H. Burkill and R. Amann (2001): Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl. Environ. Microbiol., 67, 5210–5218.

    Article  Google Scholar 

  • Zwirglmaier, K., W. Ludwig and K. H. Schleifer (2004): Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization — RING-FISH. Mol. Microbiol., 51, 89–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Yokokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokokawa, T., Nagata, T. Linking bacterial community structure to carbon fluxes in marine environments. J Oceanogr 66, 1–12 (2010). https://doi.org/10.1007/s10872-010-0001-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0001-4

Keywords

Navigation