Skip to main content
Log in

Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Conversion of high free fatty acids (FFA) containing acid oil (AO) to fatty acid methyl esters (FAME) using silica sulfuric acid (SSA) as a solid acid catalyst was investigated. Process parameters such as reaction temperature, reaction time, catalyst loading, and methanol to oil molar ratio were optimized using the Taguchi orthogonal array method. Maximum FFA conversion (97.16 %) was achieved under the optimal set of parameter values viz. 70°C, 4 mass % catalyst loading, and 1: 15 oil to methanol molar ratio after 90 min. SSA was reused three times successfully without a significant loss in activity. Biodiesel produced from AO met the international biodiesel standards. Determination of kinetic parameters proved that the experimental results fit the pseudo first order kinetic law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, C. A. W., Watts, K. C., Ackman, R. G., & Pegg, M. J. (1999). Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, 78, 1319–1326. DOI: 10.1016/s0016-2361(99)00059-9.

    Article  CAS  Google Scholar 

  • American Oil Chemists’ Society, AOCS (2009a). AOCS official method: Iodine value of fats and oils cyclohexane-acetic acid method. AOCS Cd 1d-92. Urbana, IL, USA.

    Google Scholar 

  • American Oil Chemists’ Society, AOCS (2009b). AOCS official method: Saponification value modified method using methanol. AOCS Cd 3c-91. Urbana, IL, USA.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2002a). ASTM standard: Standard test method for density, relative density (specific gravity), or API gravity of crude petroleum and liquid petroleum products by hydrometer method. ASTM D1298-99. West Conshohocken, PA, USA. DOI: 10.1520/D1298-99.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2002b). ASTM standard: Standard test method for density, relative density, and API gravity of liquids by digital density meter. ASTM D4052-96. West Conshohocken, PA, USA. DOI: 10.1520/D4052-96.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2002c). ASTM standard: Standard test method for acid number of petroleum product by potentiometric titration. ASTM D664-95. West Conshohocken, PA, USA. DOI: 10.1520/D0664-95.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2002d). ASTM standard: Standard test method for flash and fire point by Cleveland open cup tester. ASTM D92-02. West Conshohocken, PA, USA. DOI: 10.1520/D0092-02.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2002e). ASTM standard: Standard test method for pour point of petroleum products. ASTM D97-02. West Conshohocken, PA, USA. DOI: 10.1520/D0097-02.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2002f). ASTM standard: Standard test method for cloud point of petroleum products. ASTM D2500-02. West Conshohocken, PA, USA. DOI: 10.1520/D2500-02.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2002g). ASTM standard: Standard specification for biodiesel fuel (B100) blend stock for distillate fuels. ASTM D6751-02. West Conshohocken, PA, USA. DOI: 10.1520/D6751-02.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2005). ASTM standard: Standard test method for determination of the unsaponifiable nonvolatile matter in sulfated oils. ASTM D5553-95. West Conshohocken, PA, USA. DOI: 10.1520/D5553-95.

    Google Scholar 

  • American Society for Testing and Materials, ASTM (2006). ASTM standard: Standard test method for fatty acids content of naval stores, including rosin, tall oil, and related products. ASTM D1585-96. West Conshohocken, PA, USA. DOI: 10.1520/D1585-96.

    Google Scholar 

  • Balat, M., & Balat, H. (2008). A critical review of bio-diesel as a vehicular fuel. Energy Conversion and Management, 49, 2727–2741. DOI: 10.1016/j.enconman.2008.03.016.

    Article  CAS  Google Scholar 

  • Berrios, M., Siles, J., Martin, M. A., & Martin, A. (2007). A kinetic study of esterification of free fatty acids (FFA) in sunflower oil. Fuel, 86, 2383–2388. DOI: 10.1016/j.fuel.2007.02.002.

    Article  CAS  Google Scholar 

  • Brahmkhatri, V., & Patel, A. (2011). 12-Tungstophosphoric acid anchored to SBA-15: An efficient, environmentally benign reusable catalyst for biodiesel production by esterification of free fatty acids. Applied Catalysis A: General, 403, 161–172. DOI: 10.1016/j.apcata.2011.06.027.

    Article  CAS  Google Scholar 

  • Černoch, M., Hájek, M., & Skopal, F. (2010). Relationship among flash point, carbon residue, viscosity and some impurities in biodiesel after ethanolysis of rape-seed oil. Bioresource Technology, 101, 7397–7401. DOI: 10.1016/j.biortech.2010.05.003.

    Article  Google Scholar 

  • Chen, R. X., Ju, Y. H., & Mou, C. Y. (2007). Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. The Journal of Physical Chemistry C, 111, 18731–18737. DOI: 10.1021/jp0749221.

    Article  CAS  Google Scholar 

  • Chen, X., Du, W., & Liu, D. H. (2008). Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40, 423–429. DOI: 10.1016/j.bej.2008.01.012.

    Article  CAS  Google Scholar 

  • Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C. (2007). Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy, 31, 563–568. DOI: 10.1016/j.biombioe.2007.03.001.

    Article  CAS  Google Scholar 

  • Desai, M. A., & Parikh, J. K. (2012). Hydrotropic extraction of Citral from Cymbopogon flexuosus (Steud.) Wats. Industrial & Engineering Chemistry Research, 51, 3750–3757. DOI: 10.1021/ie202025b.

    Article  CAS  Google Scholar 

  • dos Santos Corrąa, I. N., de Souza, S. L., Catran, M., Bernardes, O. L., Figueiredo Portilho, M., & Pereira Langone, M. A. (2011). Enzymatic biodiesel synthesis using byproduct obtained from palm oil refining. Enzyme Research, 2011, 1–8. DOI: 10.4061/2011/814507.

    Google Scholar 

  • Echim, C., Verhé, R., de Greyt, W., & Stevens, C. (2009). Production of biodiesel from side-stream refining products. Energy & Environmental Science, 2, 1131–1141. DOI: 10.1039/b905925c.

    Article  CAS  Google Scholar 

  • European Committee for Standardization, CEN (2008). European standard: Automotive fuels — Fatty acid methyl esters (FAME) for diesel engines — Requirements and test methods. EN 14214:2008+A1:2009. Brussels, Belgium.

    Google Scholar 

  • Fang, L., Xing, R., Wu, H. H., Li, X. H., Liu, Y. M., & Wu, P. (2010). Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers. Science China Chemistry, 53, 1481–1486. DOI: 10.1007/s11426-010-3206-x.

    Article  CAS  Google Scholar 

  • Ghosh, S., & Bhattacharya, D. K. (1995). Utilization of acid oil in making valuable fatty products by microbial lipase technology. Journal of the American Oil Chemist’s Society, 72, 1541–1544. DOI: 10.1007/bf02577851.

    Article  CAS  Google Scholar 

  • Guo, F., Xiu, Z. L., & Liang, Z. X. (2012). Synthesis of biodiesel form acidified soybean soapstock using lignin-derived carbonaceous catalysts. Applied Energy, 98, 47–52. DOI: 10.1016/j.apenergy.2012.02.071.

    Article  CAS  Google Scholar 

  • Haas, M. J., Michalski, P. J., Runyon, S., Nunez, A., & Scott, K. M. (2003). Production of FAME from acid oil, a byproduct of vegetable oil refining. Journal of the American Oil Chemist’s Society, 80, 97–102. DOI: 10.1007/s11746-003- 0658-4.

    Article  CAS  Google Scholar 

  • Haas, M. J., McAloon, A. J., Yee, W. C., & Foglia, T. A. (2006). A process model to estimate biodiesel production costs. Bioresource Technology, 97, 671–678. DOI: 10.1016/j.biortech.2005.03.039.

    Article  CAS  Google Scholar 

  • Kiss, A. A., Dimian, A. C., & Rothenberg, G. (2006). Solid acid catalysts for biodiesel production — Towards sustainable energy. Advanced Synthesis & Catalysis, 348, 75–81. DOI: 10.1002/adsc.200505160.

    Article  CAS  Google Scholar 

  • Kulkarni, M. G., & Dalai, A. K. (2006). Waste cooking oil — An economical source for biodiesel: A review. Industrial & Engineering Chemistry Research, 45, 2901–2913. DOI: 10.1021/ie0510526.

    Article  CAS  Google Scholar 

  • Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28, 500–518. DOI: 10.1016/j.biotechadv.2010.03.002.

    Article  CAS  Google Scholar 

  • Levenspiel, O. (2007). Chemical reaction engineering (3rd ed.). India: Willey India Pvt. Ltd.

    Google Scholar 

  • Li, Y., Zhang, X. D., & Sun, L. (2010). Fatty acid methyl esters from soapstocks with potential use as biodiesel. Energy Conversion and Management, 51, 2307–2311. DOI: 10.1016/j.enconman.2010.04.003.

    Article  CAS  Google Scholar 

  • Lin, L., Zhou, C. S., Saritporn, W., Shen, X. Q., & Dong, M. D. (2011). Opportunities and challenges for biodiesel fuel. Applied Energy, 88, 1020–1031. DOI: 10.1016/j.apenergy.2010.09.029.

    Article  Google Scholar 

  • Lou, W. Y., Zong, M. H., & Duan, Z. Q. (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology, 99, 8752–8758. DOI: 10.1016/j.biortech.2008.04.038.

    Article  CAS  Google Scholar 

  • Mbaraka, I. K., Radu, D. R., Lin, V. S. Y., & Shanks, B. H. (2003). Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. Journal of Catalysis, 219, 329–336. DOI: 10.1016/s0021-9517(03)00193-3.

    Article  CAS  Google Scholar 

  • Melero, J. A., Iglesias, J., & Morales, G. (2009). Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chemistry, 11, 1285–1308. DOI: 10.1039/b902086a.

    Article  CAS  Google Scholar 

  • Özbay, N., Otkar, N., & Tapan, N. A. (2008). Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel, 87, 1789–1798. DOI: 10.1016/j.fuel.2007.12.010.

    Article  Google Scholar 

  • Phan, A. N., & Phan T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490–3496. DOI: 10.1016/j.fuel.2008.07.008.

    Article  CAS  Google Scholar 

  • Ramachandran, K., Sivakumar, P., Suganya, T., & Renganathan, S. (2011). Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst. Bioresource Technology, 102, 7289–72893. DOI: 10.1016/j.biortech.2011.04.100.

    Article  CAS  Google Scholar 

  • Ross, P. J. (1996). Taguchi techniques for quality engineering (2nd ed.). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Salehi, P., Zolfigol, M. A., Shirini, F., & Baghbanzadeh, M. (2006). Silica sulfuric acid and silica chloride as efficient reagents for organic reactions. Current Organic Chemistry, 10, 2171–2189. DOI: 10.2174/138527206778742650.

    Article  CAS  Google Scholar 

  • Shah, K. A., Maheria, K. C., & Parikh, J. K. (2011). Effect of reaction parameters on the catalytic transesterification of cotton-seed oil using silica sulfuric acid. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, in press. DOI: 10.1080/15567036.2011.636141.

    Google Scholar 

  • Shaterian, H. R., Ghashang, M., & Feyzi, M. (2008). Silica sulfuric acid as an efficient catalyst for the preparation of 2H-indazolo[2, 1-b]phthalazine-triones. Applied Catalysis A: General, 345, 128–133. DOI: 10.1016/j.apcata.2008.04.032.

    Article  CAS  Google Scholar 

  • Siti Kartina, A. K., & Nor Suhaila, M. H. (2011). Conversion of waste cooking oil (WCO) and palm fatty acid distillate (PFAD) to biodiesel. In Proceedings of 3rd International Symposium & Exhibition in Sustainable Energy & Environment, June 1–3, 2011 (pp. 42–44). Malacca: Malaysia. DOI: 10.1109/isesee.2011.5977106.

    Google Scholar 

  • Srilatha, K., Kumar, C. R., Devi, B. L. A. P., Prasad, R. B. N., Prasad, P. S. S., & Lingaiah, N. (2011). Efficient solid acid catalysts for esterification of free fatty acids with methanol for the production of biodiesel. Catalysis Science & Technology, 1, 662–668. DOI: 10.1039/c1cy00085c.

    Article  CAS  Google Scholar 

  • Sun, P. Y., Sun, J., Yao, J. F., Zhang, L. X., & Xu, N. P. (2010). Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions. Chemical Engineering Journal, 162, 364–370. DOI: 10.1016/j.cej.2010.04.064.

    Article  CAS  Google Scholar 

  • Taguchi, G., Chowdhury, S., & Wu, Y. (2005). Taguchi’s quality engineering handbook. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Tropecąlo, A. I., Casimiro, M. H., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2010). Esterification of free fatty acids to biodiesel over heteropolyacids immobilized on mesoporous silica. Applied Catalysis A: General, 390, 183–189. DOI: 10.1016/j.apcata.2010.10.007.

    Article  Google Scholar 

  • Wang, L., Du, W., Liu, D. H., Li, L. L., & Dai, N. M. (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic, 43, 29–32. DOI: 10.1016/j.molcatb.2006.03.005.

    Article  CAS  Google Scholar 

  • Wang, Z. M., Lee, J. S., Park, J. Y., Wu, C. Z., & Yuan, Z. H. (2007). Novel biodiesel production technology from soybean soapstock. Korean Journal of Chemical Engineering, 24, 1027–1030. DOI: 10.1007/s11814-007-0115-6.

    Article  CAS  Google Scholar 

  • Zhang, L. P, Sheng, B. Y., Xin, Z., Liu, Q., & Sun, S. Z. (2010). Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresource Technology, 101, 8144–8150. DOI: 10.1016/j.biortech.2010.05.069.

    Article  CAS  Google Scholar 

  • Zhang, Y., Dubé, M. A., McLean, D. D., & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89, 1–16. DOI: 10.1016/s0960-8524(03)00040-3.

    Article  CAS  Google Scholar 

  • Zolfigol, M. A. (2001). Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitriles and disulfides under mild conditions. Tetrahedron, 57, 9509–9511. DOI: 10.1016/s0040-4020(01)00960-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpana C. Maheria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, K.A., Parikh, J.K., Dholakiya, B.Z. et al. Fatty acid methyl ester production from acid oil using silica sulfuric acid: Process optimization and reaction kinetics. Chem. Pap. 68, 472–483 (2014). https://doi.org/10.2478/s11696-013-0488-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0488-4

Keywords

Navigation