Skip to main content
Log in

An efficient method for the preparation of benzyl γ-ketohexanoates

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Twenty acid chlorides, 4-(mono/di-benzyloxy)-4-ketobutanoyl chlorides (Ia–XXa) were synthesised by the reaction of monoesters of succinic acid with thionyl chloride. The product thus obtained (4-benzyloxy-4-ketobutanoyl chlorides) was treated with diethylcadmium to convert it into the corresponding keto-esters (Ib–XXb), the mono/di-benzyl-γ-ketohexanoates, with a good yield. All the compounds thus prepared were characterised by physical, spectroscopic (UV-VIS, IR, 1H NMR, 13C NMR), and mass measurements techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arends, I. W. C. E., & Sheldon R. A. (2004). Modern oxidation of alcohols using environmentally benign oxidants. In J. E. Bäckvall (Ed.), Modern oxidation methods (pp. 83–118). Weinheim, Germany: Wiley-VCH.

    Google Scholar 

  • Ballini, R., Barboni, L., Bosica, G., & Fiorini, D. (2002). Onepot synthesis of γ-diketones, γ-keto esters, and conjugated cyclopentenones from nitroalkanes. Synthesis, 18, 2725–2728. DOI: 10.1055/s-2002-35993.

    Article  Google Scholar 

  • Bandgar, B. P., Hashmi, A. M., & Pandit, S. S. (2005). Facile and selective transesterification of β-keto esters using NaIO4, KIO4, and anhydrous CaCl2 as inexpensive catalysts under neutral conditions. Journal of the Chinese Chemical Society, 52, 1101–1104.

    CAS  Google Scholar 

  • Bansal, R. K. (1996). Synthetic approaches in organic chemistry. Sudbury, MA, USA: Jones and Bartlett.

    Google Scholar 

  • Brockman, J. A., Jr., & Fabio, P. F. (1957). Syntheses of 6-ethyl-8-mercaptooctanoic acid and its homologs. Journal of the American Chemical Society, 79, 5027–5029. DOI: 10.1021/ja01575a053.

    Article  CAS  Google Scholar 

  • Cason, J. (1942). Branched-chain fatty acids. I. Synthesis of 17-methyloctadecanoic acid. Journal of the American Chemical Society, 64, 1106–1110. DOI: 10.1021/ja01257a029.

    Article  CAS  Google Scholar 

  • Cason, J. (1946). Branched-chain fatty acids. IV. A further study of the preparation of ketones and keto esters by means of orgaocadmium reagents. Journal of the American Chemical Society, 68, 2078–2081. DOI: 10.1021/ja01214a061.

    Article  CAS  Google Scholar 

  • Cason, J., & Prout, F. S. (1944). Branched-chain fatty acids. II. Syntheses in the C19 and C25 series. Preparation of keto esters. Journal of the American Chemical Society, 66, 46–50. DOI: 10.1021/ja01229a015.

    Article  CAS  Google Scholar 

  • Cason, J., & Prout, F. S. (1948). Methyl 4-keto-7-methyloctanoate. Organic Syntheses, 28, 75.

    CAS  Google Scholar 

  • Cason, J., Taylor, P. B., & Williams, D. A. (1951). Branchedchain fatty acids. XX. Synthesis of compounds useful for relating melting point to structure. Journal of Organic Chemistry, 16, 1187–1192. DOI: 10.1021/jo50002a002.

    Article  CAS  Google Scholar 

  • Csende, F. (2002). Some alternative synthetic routes to γ- and δ-oxo acid derivatives. Acta Chimica Slovenica, 49, 663–676.

    CAS  Google Scholar 

  • Csende, F., Szabó, Z., & Stájer, G. (1993). Synthesis and structural study of new saturated isoindol-1-one derivatives. Heterocycles, 36, 1809–1821. DOI: 10.3987/COM-93-6366.

    Article  CAS  Google Scholar 

  • Dahl, A. C., Fjeldberg, M., & Madsen, J. O. (1999). Baker’s yeast: improving the D-stereoselectivity in reduction of 3-oxo esters. Tetrahedron: Asymmetry, 10, 551–559. DOI: 10.1016/s0957-4166(99)00025-7.

    Article  CAS  Google Scholar 

  • Forni, A., Moretti, I., Prati, F., & Torre, G. (1994). Stereochemical control in yeast reduction of fluorinated β-diketones. Tetrahedron, 50, 11995–12000. DOI: 10.1016/s0040-4020(01)89310-8.

    Article  CAS  Google Scholar 

  • Fujisawa, T., Sugimoto, T., & Shimizu, M. (1994). Highly stereocontrolled access to trifluoromethylbenzylic alcohols possessing p-substituents by the bakers’ yeast reduction. Tetrahedron: Asymmetry, 5, 1095–1098. DOI: 10.1016/0957-4166(94)80060-x.

    Article  CAS  Google Scholar 

  • Hayakawa, R., Nozawa, K., Shimizu, M., & Fujisawa, T. (1998). Control of enantioselectivity in the bakers’ yeast reduction of β-keto ester derivatives in the presence of a sulfur compound. Tetrahedron Letters, 39, 67–70. DOI: 10.1016/s0040-4039(97)10490-7.

    Article  CAS  Google Scholar 

  • Heiss, C., Laivenieks, M., Zeikus, J. G., & Phillips, R. S. (2001). The stereospecificity of secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus is partially determined by active site water. Journal of the American Chemical Society, 123, 345–346. DOI: 10.1021/ja005575a.

    Article  CAS  Google Scholar 

  • Hilgenkamp, R., & Zercher, C. K. (2001). Tandem chain extension-homoenolate formation: the formation of α-methylated-γ-keto esters. Organic Letters, 3, 3037–3040. DOI: 10.1021/ol016485t.

    Article  CAS  Google Scholar 

  • Huang, D., Yan, M., Zhao, W. J., & Shen, Q. (2005). Efficient synthesis of γ-keto esters from enamines and EDA. Synthetic Communications, 35, 745–750. DOI: 10.1081/scc-200050387.

    Article  CAS  Google Scholar 

  • Hudlicky, M. (1990). Oxidation in organic chemistry. Washington, DC, USA: American Chemical Society.

    Google Scholar 

  • Iqbal, M., Baloch, I. B., & Baloch, M. K. (2012). Synthesis and structural characterization of novel monoesters of succinic anhydride with aryl alcohols. Chemistry Journal, 2, 12–19.

    Article  CAS  Google Scholar 

  • Itoh, N., Matsuda, M., Mabuchi, M., Dairi, T., & Wang, J. (2002). Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. European Journal of Biochemistry, 269, 2394–2402. DOI: 10.1046/j.1432-1033.2002.02899.x.

    Article  CAS  Google Scholar 

  • Izquierdo, J., Rodriguez, S., & Gonzalez, F. V. (2011). Regioselective ring opening and isomerization reactions of 3,4-epoxyesters catalyzed by boron trifluoride. Organic Letters, 13, 3856–3859. DOI: 10.1021/ol201378w.

    Article  CAS  Google Scholar 

  • Kataoka, M., Yamamoto, K., Kawabata, H., Wada, M., Kita, K., Yanase, H., & Shimizu, S. (1999). Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 51, 486–490. DOI: 10.1007/s002530051421.

    Article  CAS  Google Scholar 

  • Kashima, C., Shirahata, Y., & Tsukamoto, Y. (2001). Preparation of β-substituted γ-keto esters by the Grignard reaction on N-acylpyrazoles. Heterocycles, 54, 309–317. DOI: 10.3987/com-00-s(I)37.

    Article  CAS  Google Scholar 

  • Kizaki, N., Yasohara, Y., Hasegawa, J., Wada, M., Kataoka, M., & Shimizu, S. (2001). Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Applied Microbiology and Biotechnology, 55, 590–595. DOI: 10.1007/s002530100599.

    Article  CAS  Google Scholar 

  • Larock, R. C. (1999). Comprehensive organic transformations (2nd ed.). New York, NY, USA: Wiley-VCH.

    Google Scholar 

  • Nakamura, K., Yamanaka, R., Matsuda, T., & Harada, T. (2003). Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron: Asymmetry, 14, 2659–2681. DOI: 10.1016/s0957-4166(03)00526-3.

    Article  CAS  Google Scholar 

  • Poliakoff, M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green chemistry: science and politics of change. Science, 297, 807–810. DOI: 10.1126/science.297.5582.807.

    Article  CAS  Google Scholar 

  • Roberts, J. D., & Caserio, M. C. (1964). Basic principles of organic chemistry. Menolo Park, CA, USA: W. A. Benjamin Inc.

    Google Scholar 

  • Ronsheim, M. D., Hilgenkamp, R. K., & Zercher, C. K. (2002). Formation of γ-keto esters from β-keto esters: Methyl 5,5-dimethyl-4-oxo-hexanoate. Organic Syntheses, 79, 146.

    CAS  Google Scholar 

  • Von Rudloff, E. (1958). Synthesis of some hexanediols. Canadian Journal of Chemistry, 36, 486–491. DOI: 10.1139/v58-069.

    Article  Google Scholar 

  • Shafiee, A., Motamedi, H., & King, A. (1998). Purification, characterization and immobilization of an NADAPH-dependent enzyme involved in the chiral specific reduction of the keto ester M, an intermediate in the synthesis of an antiasthma drug, Montelukast, from Microbacterium campoquemadoensis (MB5614). Applied Microbiology and Biotechnology, 49, 709–717. DOI: 10.1007/s002530051236.

    Article  CAS  Google Scholar 

  • Stájer, G., Csende, F., Bernáth, G., Sohár, P., & Szúnyog, J. (1994). Preparation and steric structure of 3(2H)-pyridazinones and 1,2-oxazin-6-ones fused with three-to sixmembered saturated carbocycles or norbornane skeleton. Monatshefte für Chemie/Chemical Monthly, 125, 933–944. DOI: 10.1007/bf00812708.

    Article  Google Scholar 

  • Taylor, H. T. (1958). Preparation of unsaturated keto-acids from the interaction of ethylene and acid anhydrides. Journal of the Chemical Society (Resumed), 1958, 3922–3924. DOI: 10.1039/jr9580003922.

    Google Scholar 

  • Tojo, G., & Fernández, M. (2006). Oxidation of alcohols to aldehydes and ketones. New York, NY, USA: Springer.

    Google Scholar 

  • Wang, W., Xu, B., & Hammond, G. B. (2009). Efficient synthesis of γ-keto esters through neighboring carbonyl groupassisted regioselective hydration of 3-alkynoates. Journal of Organic Chemistry, 74, 1640–1643. DOI: 10.1021/jo802450n.

    Article  CAS  Google Scholar 

  • Wehrli, P. A., & Chu, V. (1973). Novel synthesis of γ-keto esters. Journal of Organic Chemistry, 38, 3436–3436. DOI: 10.1021/jo00959a053.

    Article  CAS  Google Scholar 

  • Wehrli, P. A., & Chu, V. (1978). γ-Ketoesters from aldehydes via diethyl acylsuccinates: Ethyl 4-oxohexanoate. Organic Syntheses, 58, 79.

    CAS  Google Scholar 

  • Williams, D.B.G., Blann, K., & Holzapfel, C.W. (2001). Aryl γ-ketoesters as precursors for γ-butyrolactones in samarium(II) iodide-mediated reactions. Synthetic Communications, 31, 203–209. DOI: 10.1081/scc-100000200.

    Article  CAS  Google Scholar 

  • Williams, D. B. G., Blann, K., Caddy, J., & Holzapfel, C. W. (2002). Aryl γ-ketoesters as precursors for γ-butyrolactone dimers in samarium(II) iodide-mediated reactions. Synthetic Communications, 32, 3755–3762. DOI: 10.1081/scc-120015393.

    Article  CAS  Google Scholar 

  • Yamamoto, H., Kimoto, N., Matsuyama, A., & Kobayashi, Y. (2002a). Purification and properties of a carbonyl reductase useful for production of ethyl (S)-4-chloro-3-hydroxybutanoate from Kluyveromyces lactis. Bioscience, Biotechnology, and Biochemistry, 66, 1775–1778. DOI: 10.1271/bbb.66.1775.

    Article  CAS  Google Scholar 

  • Yamamoto, H., Matsuyama, A., & Kobayashi, Y. (2002b). Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Bioscience, Biotechnology, and Biochemistry, 66, 481–483. DOI: 10.1271/bbb.66.481.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M., Baloch, I.B. & Baloch, M.K. An efficient method for the preparation of benzyl γ-ketohexanoates. Chem. Pap. 67, 444–455 (2013). https://doi.org/10.2478/s11696-012-0282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0282-8

Keywords

Navigation