Skip to main content
Log in

Theoretical enthalpies of formation and structural characterisation of halogenated nitromethanes and isomeric halomethyl nitrites

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The structural, energetic, and thermochemical properties of a number of halogenated nitromethanes, CH n X3−n NO2, and the isomeric nitrites, CH n X3−n ONO, are investigated, using theoretical ab initio and density functional theory (DFT) electronic structure methods. Analysis of the results and comparison with the maternal species, nitromethane, CH3NO2, and methyl nitrite, CH3ONO, reveal strong dependence of the molecular properties on the halogen induction effect. Opposite trends are obtained in the C—N and C—O bond dissociation energies (BDE) upon halogenation and higher stabilities are calculated for the trans-nitrite isomers, in contrast with the plain alkyl families where the nitroalkanes are the most stable species. Formation enthalpies, ΔH f , at 298 K are calculated for all halogenated isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asatryan, R., Bozzelli, J. W., & Simmie, J. M. (2008). Thermochemistry of methyl and ethyl nitro, RNO2, and nitrite, RONO, organic compounds. Journal of Physical Chemistry A, 112, 3172–3185. DOI: 10.1021/jp710960u.

    Article  CAS  Google Scholar 

  • Barss, W. M. (1957). Structure of gaseous chloropicrin as determined by electron diffraction. Journal of Chemical Physics, 27, 1260–1267. DOI: 10.1063/1.1743987.

    Article  CAS  Google Scholar 

  • Bergner, A., Dolg, M., Küchle, W., Stoll, H., & Preuss, H. (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics, 80, 1431–1441. DOI: 10.1080/00268979300103121.

    Article  CAS  Google Scholar 

  • Bull, J. N., Maclagan, R. G. A. R., & Harland, P. W. (2010). On the electron affinity of nitromethane (CH3NO2). Journal of Physical Chemistry A, 114, 3622–3629. DOI: 10.1021/jp9113317.

    Article  CAS  Google Scholar 

  • Cox, A. P., & Waring, S. (1972). Microwave spectrum and structure of nitromethane. Journal of Chemical Society Faraday Transactions 2,68, 1060–1071. DOI: 10.1039/f29726801060.

    Google Scholar 

  • Curtiss, L. A., Raghavachari, K., & Pople, J. A. (1993). Gaussian-2 theory using reduced Møller-Plesset orders. Journal of Chemical Physics, 98, 1293–1298, DOI: 10.1063/1.464297.

    Article  CAS  Google Scholar 

  • Dean, A. M., & Bozzelli, J. W. (1999). Combustion chemistry of nitrogen. In W. C. Gardiner, Jr. (Ed.), Gas-phase combustion chemistry (pp. 125–342). New York, NY, USA: Springer.

    Google Scholar 

  • Denis, P. A., Ventura, O. N., Le, H. T., & Nguyen, M. T. (2003). Density functional study of the decomposition pathways of nitroethane and 2-nitropropane. Physical Chemistry Chemical Physics, 5, 1730–1738. DOI: 10.1039/b300275f.

    Article  CAS  Google Scholar 

  • Foresman, J. B., & Frisch, A. (1996). Exploring chemistry with electronic structure methods (2nd ed.). Pittsburgh, PA, USA: Gaussian Inc.

    Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, K. R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, V. C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavashari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, J. L., Gonzalez, C., & Pople, J. (2004). Gaussian 03 [computer software]. Wallingford, CT, USA: Gaussian Inc.

    Google Scholar 

  • Harland, P. W., & Brooks, P. R. (2010). Crossed-beam studies of electron transfer to oriented trichloronitromethane, CCl3NO2, molecules. Journal of Chemical Physics, 132, 044307. DOI: 10.1063/1.3299280.

    Article  Google Scholar 

  • Jursic, B. S. (1997). Computation of geometries and frequencies of singlet and triplet nitromethane with density functional theory using Gaussian-type orbitals. International Journal of Quantum Chemistry, 64, 263–269. DOI: 10.1002/(SICI)1097-461X(1997)64:2<263::AID-QUA15>3.0.CO;2-A.

    Article  CAS  Google Scholar 

  • Kirkham Cole, S., Cooper, W. J., Fox, R. V., Gardinali, P. R., Mezyk, S. P., Mincher, B. J., & O’shea, K. E. (2007). Free radical chemistry of disinfection byproducts. 2. Rate constants and degradation mechanisms of trichloronitromethane (Chloropicrin). Environmental Science & Technology, 41, 863–869. DOI: 10.1021/es061410b.

    Article  Google Scholar 

  • Krasner, S. W., Weinberg, H. S., Richardson, S. D., Pastor, S. J., Chinn, R., Sclimenti, N. I., Onstad, G. D., & Thurston, A. D., Jr. (2006). Occurrence of a new generation of disinfection byproducts. Environmntal Science & Technology, 40, 7175–7185. DOI: 10.1021/es060353j.

    Article  CAS  Google Scholar 

  • Lu, N., & Thrasher, J. S. (2002). The direct synthesis of trifluoronitromethane, CF3NO2. Journal of Fluorine Chemistry, 117, 181–184. DOI: 10.1016/s0022-1139(02)00183-5.

    Article  CAS  Google Scholar 

  • Luo, Y. R. (2003). Handbook of bond dissociation energies in inorganic compounds. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Marshall, P., Srinivas, G. N., & Schwartz, M. (2005). A computational study of the thermochemistry of bromine- and iodine-containing methanes and methyl radicals. Journal of Physical Chemistry A, 109, 6371–6379. DOI: 10.1021/jp0518052.

    Article  CAS  Google Scholar 

  • Mezyk, S. P., Helgeson, T., Kirkham Cole, S., Cooper, W. J., Fox, R. V., Gardinali, P. R., & Mincher, B. J. (2006). Free radical chemistry of disinfection-byproducts. 1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water. Journal of Physical Chemistry A, 110, 2176–2180. DOI: 10.1021/jp054962+.

    Article  CAS  Google Scholar 

  • Mincher, B. J., Mezyk, S. P., Cooper, W. J., Kirkham Cole, S., Fox, R. V., & Gardinali, P. R., (2010). Free radical chemistry of disinfection-byproducts. 3. Degradation mechanisms of chloronitromethane, bromonitromethane, and dichloronitromethane. Journal of Physical Chemistry A, 114, 117–125. DOI: 10.1021/jp907305g.

    Article  CAS  Google Scholar 

  • Munakata, H., Kakumoto, T., & Baker, J. (1997). An MP2 and density functional study of the oxides of nitrogen. Journal of Molecular Structure: THEOCHEM, 391, 231–240. DOI: 10.1016/s0166-1280(96)04788-4.

    Article  CAS  Google Scholar 

  • Pagsberg, P., Jodkowski, J. T., Ratajczak, E., & Sillesen, A. (1998). Experimental and theoretical studies of the reaction between CF3 and NO2 at 298 K. Chemical Physics Letters, 286, 138–144, DOI: 10.1016/s0009-2614(98)00074-8.

    Article  CAS  Google Scholar 

  • Pauling, L. (1932). The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. Journal of the American Chemical Society, 54, 3570–3582. DOI: 10.1021/ja01348a011.

    Article  CAS  Google Scholar 

  • Plewa, M. J., Wagner, E. D., Jazwierska, P., Richardson, S. D., Chen, P. H., & McKague, A. B. (2004). Halonitromethane drinking water disinfection byproducts: Chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environmental Science & Technology, 38, 62–68. DOI: 10.1021/es030477l.

    Article  CAS  Google Scholar 

  • Riad Manaa, M., & Fried, L. E. (1998). DFT and ab initio study of the unimolecular decomposition of the lowest singlet and triplet states of nitromethane. Journal of Physical Chemistry A, 102, 9884–9889. DOI: 10.1021/jp982003s.

    Article  Google Scholar 

  • Richardson, S. D. (2003). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 75, 2831–2857. DOI: 10.1021/ac0301301.

    Article  CAS  Google Scholar 

  • Rosenberg, M., & Sølling, T. I. (2010). Computational investigation of photo induced processes in alkyl nitrites and the product alkoxy radicals. Chemical Physics Letters, 484, 113–118, DOI: 10.1016/j.cplett.2009.11.001.

    Article  CAS  Google Scholar 

  • Sander, S. P., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., & Orkin, V. L. (2006). Chemical kinetics and photochemical data for use in Atmospheric Studies Evaluation Number 15. Pasadena, CA, USA: Jet Propulsion Laboratory, National Aeronautics and Space Administration. (JPL Publication 06-2)

    Google Scholar 

  • Schwartz, M., Peebles, L. R., Berry, R. J., & Marshall, P. (2003). A computational study of chlorofluoro-methyl radicals. Journal of Chemical Physics, 118, 557–565. DOI: 10.1063/1.1524157.

    Article  CAS  Google Scholar 

  • Shao, J. X., Cheng, X. L., & Yang, X. D. (2005). Calculations of the bond dissociation energies for NO2 scission in some nitro compounds. Structural Chemistry, 16, 457–460. DOI: 10.1007/s11224-005-4334-3.

    Article  CAS  Google Scholar 

  • Shen, Q., Brown, J. W., Malona, J. A., Cochran, J. C., & Richardson, A. D. (2006). Molecular structure and conformation of chloronitromethane as determined by gas-phase electron diffraction and theoretical calculations. Journal of Physical Chemistry A, 110, 7491–7495. DOI: 10.1021/jp061100f.

    Article  CAS  Google Scholar 

  • Temussi, P. A., & Tancredi, T. (1968). The mechanism of isomerization of methyl nitrite. Journal of Physical Chemistry, 72, 3581–3583. DOI: 10.1021/j100856a039.

    Article  CAS  Google Scholar 

  • Turner, P. H., Corkill, M. J., & Cox, A. P. (1979). Microwave spectra and structures of cis- and transmethyl nitrite. Methyl barrier in trans-methyl nitrite. Journal of Physical Chemistry, 83, 1473–1482. DOI: 10.1021/j100474a023.

    CAS  Google Scholar 

  • Ventura, O. N., Saenz-Méndez, P., & Bottinelli, F. (2011). Computational study on the partial dechlorination of the pesticide chloropicrin by sulfur species. Theoretical Chemistry Accounts, 130, 955–963. DOI: 10.1007/s00214-011-1057-y.

    Article  CAS  Google Scholar 

  • Wade, E. A., Reak, K. E., Parsons, B. F., Clemes, T. P., & Singmaster, K. A. (2002). Photochemistry of chloropicrin in cryogenic matrices. Chemical Physics Letters, 365, 473–479. DOI: 10.1016/s0009-2614(02)01495-1.

    Article  CAS  Google Scholar 

  • Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. Journal of Chemical Physics, 82, 284–298. DOI: 10.1063/1.448800.

    Article  CAS  Google Scholar 

  • Zhu, R. S., & Lin, M. C. (2009). CH3NO2 decomposition/isomerization mechanism and product branching ratios: An ab initio chemical kinetic study. Chemical Physics Letters, 478, 11–16. DOI: 10.1016/j.cplett.2009.07.034.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmas, A.M., Ntivas, A., Liaska, S. et al. Theoretical enthalpies of formation and structural characterisation of halogenated nitromethanes and isomeric halomethyl nitrites. Chem. Pap. 66, 1157–1165 (2012). https://doi.org/10.2478/s11696-012-0243-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0243-2

Keywords

Navigation