Skip to main content
Log in

Equivariant Morse equation

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

The paper is concerned with the Morse equation for flows in a representation of a compact Lie group. As a consequence of this equation we give a relationship between the equivariant Conley index of an isolated invariant set of the flow given by .x = −∇f(x) and the gradient equivariant degree of ∇f. Some multiplicity results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bredon G.E., Introduction to Compact Transformation Groups, Pure Appl. Math., 46, Academic Press, New York-London, 1972

    MATH  Google Scholar 

  2. Conley C., Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math., 38, American Mathematical Society, Providence, 1978

    MATH  Google Scholar 

  3. Conley C., Zehnder E., Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., 1984, 37(2), 207–253

    Article  MathSciNet  MATH  Google Scholar 

  4. tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987

    Book  MATH  Google Scholar 

  5. Field M.J., Dynamics and Symmetry, ICP Adv. Texts Math., 3, Imperial College Press, London, 2007

    MATH  Google Scholar 

  6. Floer A., A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems, 1987, 7(1), 93–103

    Article  MathSciNet  MATH  Google Scholar 

  7. Floer A., Zehnder E., The equivariant Conley index and bifurcations of periodic solutions of Hamiltonian systems, Ergodic Theory Dynam. Systems, 1988, 8, 87–97

    Article  MathSciNet  Google Scholar 

  8. Gęba K., Degree for gradient equivariant maps and equivariant Conley index, In: Topological Nonlinear Analysis II, Frascati, June, 1995, Progr. Nonlinear Differential Equations Appl., 27, Birkhäuser, Boston, 1997, 247–272

    Google Scholar 

  9. Gęba K., Rybicki S., Some remarks on the Euler ring U(G), J. Fixed Point Theory Appl., 2008, 3(1), 143–158

    Article  MathSciNet  MATH  Google Scholar 

  10. Goębiewska A., Rybicki S., Global bifurcations of critical orbits of G-invariant strongly indefinite functionals, Nonlinear Anal., 2011, 74(5), 1823–1834

    Article  MathSciNet  Google Scholar 

  11. Hatcher A., Algebraic Topology, Cambridge University Press, Cambridge, 2002

    MATH  Google Scholar 

  12. Illman S., Equivariant singular homology and cohomology for actions of compact Lie groups, Proceedings of the Second Conference on Compact Transformation Groups, Amherst, June 7–18, 1971, Lecture Notes in Math., 298, Springer, Berlin, 1972, 403–415

    Chapter  Google Scholar 

  13. Izydorek M., Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonlinear Anal., 2002, 51(1), Ser. A: Theory Methods, 33–66

    Google Scholar 

  14. Izydorek M., Styborski M., Morse inequalities via Conley index theory, In: Topological Methods in Nonlinear Analysis, Torun, February 9–13, 2009, Lect. Notes Nonlinear Anal., 12, Juliusz Schauder Center for Nonlinear Studies, Torun, 2011

    Google Scholar 

  15. Kawakubo K., The Theory of Transformation Groups, Clarendon Press, Oxford University Press, New York, 1991

    MATH  Google Scholar 

  16. Razvan M.R., On Conley’s fundamental theorem of dynamical systems, Int. J. Math. Math. Sci., 2004, 25–28, 1397–1401

    Article  MathSciNet  Google Scholar 

  17. Ruan H., Rybicki S., Applications of equivariant degree for gradient maps to symmetric Newtonian systems, Nonlinear Anal., 2008, 68(6), 1479–1516

    Article  MathSciNet  MATH  Google Scholar 

  18. Rybakowski K.P., The Homotopy Index and Partial Differential Equations, Universitext, Springer, Berlin, 1987

    Book  MATH  Google Scholar 

  19. Rybicki S., A degree for S 1-equivariant orthogonal maps and its applications to bifurcation theory, Nonlinear Anal., 1994, 23(1), 83–102

    Article  MathSciNet  MATH  Google Scholar 

  20. Rybicki S., Degree for equivariant gradient maps, Milan J. Math., 2005, 73, 103–144

    Article  MathSciNet  MATH  Google Scholar 

  21. Spanier E.H., Algebraic Topology, McGraw-Hill, New York-Toronto, 1966

    MATH  Google Scholar 

  22. Styborski M., Topological Invariants for Equivariant Flows: Conley Index and Degree, PhD thesis, Polish Academy of Sciences, Warsaw, 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Styborski.

About this article

Cite this article

Styborski, M. Equivariant Morse equation. centr.eur.j.math. 10, 2138–2159 (2012). https://doi.org/10.2478/s11533-012-0124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-012-0124-5

MSC

Keywords

Navigation