Skip to main content
Log in

A non compact Krylov–Bogolioubov theorem

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We show that each locally uniformly Lipschitz and minimal action of a locally compact group G on a locally compact metrisable space X admits an invariant Radon measure. We deduce a Krylov–Bogolioubov type theorem for flows on non compact metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Yaacov, I., Melleray, J.: Isometrisable group actions. Proc. Amer. Math. Soc. 144(9), 4081–4088 (2016)

    Article  MathSciNet  Google Scholar 

  2. Beardon, A.F., Minda, D.: Normal families: A geometric perspective. Comput. Method. Funct. Theory 14, 331–355 (2014)

    Article  MathSciNet  Google Scholar 

  3. Fomin, S.: Finite invariant measures in the flows. Rec. Math. (Mat. Sbornik) 12, 99–108 (1943)

    MathSciNet  MATH  Google Scholar 

  4. Fomin, S.: On measures invariant under certain groups of transformations. Izvestiya Akad. Nauk 14, 261–274 (1950)

    MathSciNet  Google Scholar 

  5. Fomin, S.: On dynamical systems with pure point spectrum. Doklady Akad. Nauk 77, 29–32 (1951)

    MathSciNet  Google Scholar 

  6. Gottschalk, W.H.: Almost periodic points with respect to transformation semigroups. Ann. Math. 47, 762–766 (1946)

    Article  MathSciNet  Google Scholar 

  7. Haar, A.: Der maassbegriff in der theorie der kontinuierlichen gruppen. Ann. Math. 34, 147–169 (1933)

    Article  MathSciNet  Google Scholar 

  8. Halmos, P.R.: Invariant measures. Ann. Math. 48, 735–754 (1947)

    Article  MathSciNet  Google Scholar 

  9. Halmos, P.R., von Neumann, J.: Operator methods in classical mechanics II. Ann. Math. 43, 332–350 (1942)

    Article  MathSciNet  Google Scholar 

  10. Hedlund, G.A.: Sturmian minimal sets. Amer. J. Math. 66, 605–620 (1944)

    Article  MathSciNet  Google Scholar 

  11. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Academic Press, New York (1963)

    Book  Google Scholar 

  12. Hopf, E.: Ergodentheorie, Ergebnisse der Mathematik, Band 5, no. 2. Springer, Berlin (1937)

  13. Kellerhals, J., Monod, N., Rordam, M.: Non-supramenable groups acting on locally compact spaces. Documenta Math. 18, 1597–1626 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Krylov, N., Bogolioubov, N.: La théorie géenérale de la mesure dans son application á l’étude des systémes dynamiques de la mécanique non linéaire. Ann. Math. 38, 65–113 (1937)

    Article  MathSciNet  Google Scholar 

  15. Mitsuishi, A.: The coincidence of the homologies of integral currents and of integral singular chains via cosheaves. Math. Z. 292, 1069–1103 (2019)

    Article  MathSciNet  Google Scholar 

  16. Nemycki\(\breve{\rm i}\), V.V., Stepanov, V.V.: Qualitative Theory of Differential Equations, 2nd edn, Moscow (1949)

  17. Oxtoby, J.: Ergodic sets. Bull. Amer. Math. Soc. 58, 116–135 (1952)

    Article  MathSciNet  Google Scholar 

  18. Rosenblatt, J.M.: Invariant measures and growth conditions. Trans. Amer. Math. Soc. 193, 33–53 (1974)

    Article  MathSciNet  Google Scholar 

  19. Royden, H.L.: Real Analysis, 3rd edn. Macmillan, New York (1988)

    MATH  Google Scholar 

  20. Sakai, K.: Various shadowing properties for positively expansive maps. Topology Appl. 131(1), 15–31 (2003)

    Article  MathSciNet  Google Scholar 

  21. Skorulski, B., Urbański, M.: Dynamical rigidity of transcendental meromorphic functions. Nonlinearity 25, 2337–2348 (2012)

    Article  MathSciNet  Google Scholar 

  22. Steinlage, R.C.: Semi-direct products and Haar measure on the space of oriented lines in E\(_3\), Rend. Circ. di Palermo, Ser. II, Tomo XVII, Fasc. II, 195–207 (1968)

  23. Steinlage, R.C.: On Haar measure in locally compact T\(_2\) spaces. Amer. J. Math. 97(2), 291–307 (1975)

    Article  MathSciNet  Google Scholar 

  24. Veselý, L.: The distance between subdifferentials in the terms of functions. Comment. Math. Univ. Carolina 34(3), 419–424 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Weil, A.: L’intégration dans les Groupes Topologiques et ses Applications. Deuxième édition, Hermann, Paris (1979)

    MATH  Google Scholar 

  26. Yosida, K.: Simple Markov process with a locally compact phase space. Math. Japon. 1, 99–103 (1948)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Amini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, M. A non compact Krylov–Bogolioubov theorem. Annali di Matematica 201, 2837–2845 (2022). https://doi.org/10.1007/s10231-022-01221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01221-x

Keywords

Mathematics Subject Classification

Navigation