Skip to main content
Log in

Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Transcranial electrical stimulation (TES) includes methods such as transcranial direct current stimulation, transcranial random noise stimulation, and transcranial alternating current stimulation. These methods provide novel ways of enhancing human cognitive abilities for restorative purposes, or for general cognitive enhancement, by modulating neuronal activity. I discuss here the basic principles behind these methods and provide some illustrations of their efficacy in cognitive enhancement in those with typical and atypical brain function. Next, I outline some future directions for research that are have been largely neglected, such as the issue of individual differences, cognitive side effects, the efficacy of TES for use with healthy elderly populations, children with atypical development, and sports. The results observed thus far with TES as well as its future possibilities have significant implications for both basic and translational neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiner R. D., Retrograde amnesia with electroconvulsive therapy: characteristics and implications, Arch. Gen. Psych., 2000, 57, 591–592

    Article  CAS  Google Scholar 

  2. Zaghi S., Thiele B., Pimentel D., Pimentel T., Fregni F., Assessment and treatment of pain with non-invasive cortical stimulation, Restor. Neurol. Neurosci., 2011, 29, 439–451

    PubMed  Google Scholar 

  3. Antal A., Kriener N., Lang N., Boros K., Paulus W., Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine, Cephalalgia, 2011, 31, 820–828

    Article  PubMed  Google Scholar 

  4. Kalu U. G., Sexton C. E., Loo C. K., Ebmeier K. P., Transcranial direct current stimulation in the treatment of major depression: a metaanalysis, Psychol. Med., 2012, 42, 1791–1800

    Article  PubMed  CAS  Google Scholar 

  5. Walsh V., Cowey A., Transcranial magnetic stimulation and cognitive neuroscience, Nat. Rev. Neurosci., 2000, 1, 73–79

    Article  PubMed  CAS  Google Scholar 

  6. Walsh V., Pascual-Leone A., Transcranial magnetic stimulation: a neurochronometric of mind, MIT Press, Cambridge, MA, 2003

    Google Scholar 

  7. Allen E. A., Pasley B. N., Duong T., Freeman R. D., Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences, Science, 2007, 317, 1918–1921

    Article  PubMed  CAS  Google Scholar 

  8. Shafi M. M., Westover M. B., Fox M. D., Pascual-Leone A., Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging, Eur. J. Neurosci., 2012, 35, 805–825

    Article  PubMed  Google Scholar 

  9. Ruff C. C., Driver J., Bestmann S., Combining TMS and fMRI: From ‘virtual lesions’ to functional-network accounts of cognition, Cortex, 2009, 45, 1043–1049

    Article  PubMed  Google Scholar 

  10. Sandrini M., Umiltà C., Rusconi E., The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues, Neurosci. Biobehav. Rev., 2011, 35, 516–536

    Article  PubMed  Google Scholar 

  11. Gandiga P. C., Hummel F. C., Cohen L. G., Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation, Clin. Neurophysiol., 2006, 117, 845–850

    Article  PubMed  Google Scholar 

  12. Holland R., Crinion J., Can tDCS enhance treatment of aphasia after stroke?, Aphasiology, 2011, 26, 1169–1191

    Article  PubMed  Google Scholar 

  13. Reis J., Fritsch B., Modulation of motor performance and motor learning by transcranial direct current stimulation, Curr. Opin. Neurol., 2011, 24, 590–596

    Article  PubMed  Google Scholar 

  14. Jacobson L., Koslowsky M., Lavidor M., tDCS polarity effects in motor and cognitive domains: a meta-analytical review, Exp. Brain Res., 2012, 216, 1–10

    Article  PubMed  Google Scholar 

  15. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al., Transcranial direct current stimulation: state of the art 2008, Brain Stimul., 2008, 1, 206–223

    Article  PubMed  Google Scholar 

  16. Bindman J. L., Lippold O. C. J., Redfearm J. W. T., The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects, J. Physiol., 1964, 172, 369–382

    PubMed  CAS  Google Scholar 

  17. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning, Neuron, 2010, 66, 198–204

    Article  PubMed  CAS  Google Scholar 

  18. Nitsche M. A., Paulus W., Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation, J. Physiol., 2000, 527, 633–639

    Article  PubMed  CAS  Google Scholar 

  19. Kuo M.-F., Nitsche M.A., Effects of transcranial electrical stimulation on cognition, Clin. EEG Neurosci., 2012, 43, 192–199

    Article  PubMed  Google Scholar 

  20. Antal A., Nitsche M. A., Kruse W., Kincses T.Z., Hoffmann K.-P., Paulus W., Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans, J. Cogn. Neurosci., 2004, 16, 521–527

    Article  PubMed  Google Scholar 

  21. Terhune D. B., Tai S., Cowey A., Popescu T., Cohen Kadosh R., Enhanced cortical excitability in grapheme-color synesthesia and its modulation, Curr. Biol., 2011, 21, 2006–2009

    Article  PubMed  CAS  Google Scholar 

  22. Dockery C. A., Hueckel-Weng R., Birbaumer N., Plewnia C., Enhancement of planning ability by transcranial direct current stimulation, J. Neurosci., 2009, 29, 7271–7277

    Article  PubMed  CAS  Google Scholar 

  23. Nitsche M., Paulus W., Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans, Neurology, 2001, 57, 1899–1901

    Article  PubMed  CAS  Google Scholar 

  24. Hattori Y., Moriwaki A., Hori Y., Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex, Neurosci. Lett., 1990, 116, 320–324

    Article  PubMed  CAS  Google Scholar 

  25. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L.G., et al., Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning, Neuron, 2010, 66, 198–204

    Article  PubMed  CAS  Google Scholar 

  26. Márquez-Ruiz J., Leal-Campanario R., Sánchez-Campusano R., Molaee-Ardekani B., Wendling F., Miranda P. C., et al., Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits, Proc. Natl. Acad. Sci. USA, 2012, 109, 6710–671

    Article  PubMed  Google Scholar 

  27. Neves G., Cooke S. F., Bliss T. V. P., Synaptic plasticity, memory and the hippocampus: a neural network approach to causality, Nat. Rev. Neurosci., 2008, 9, 65–75

    Article  PubMed  CAS  Google Scholar 

  28. Stagg C. J., Best J. G., Stephenson M. C., O’Shea J., Wylezinska M., Kincses Z.T., et al., Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation, J. Neurosci., 2009, 29, 5202–5209

    Article  PubMed  CAS  Google Scholar 

  29. Stagg C. J., Bachtiar V., Johansen-Berg H., The role of GABA in human motor learning, Curr. Biol., 2011, 21, 480–484

    Article  PubMed  CAS  Google Scholar 

  30. Clark V. P., Coffman B. A., Trumbo M. C., Gasparovic C., Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a 1H magnetic resonance spectroscopy study, Neurosci. Lett., 2011, 500, 67–71

    Article  PubMed  CAS  Google Scholar 

  31. Floyer-Lea A., Wylezinska M., Kincses T., Matthews P. M., Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning, J. Neurophysiol., 2006, 95, 1639–1644

    Article  PubMed  CAS  Google Scholar 

  32. Holland R., Leff A. P., Josephs O., Galea J. M., Desikan M., Price C. J., et al., Speech facilitation by left inferior frontal cortex stimulation, Curr. Biol., 2011, 21, 1403–1407

    Article  PubMed  CAS  Google Scholar 

  33. Antal A., Kovács G., Chaieb L., Cziraki C., Paulus W., Greenlee M. W., Cathodal stimulation of human MT+ leads to elevated fMRI signal: a tDCS- fMRI study, Restor. Neurol. Neurosci., 2012, 30, 255–263

    PubMed  Google Scholar 

  34. Keeser D., Meindl T., Bor J., Palm U., Pogarell O., Mulert C., et al., Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI, J. Neurosci., 2011, 31, 15284–15293

    Article  PubMed  CAS  Google Scholar 

  35. Wirth M., Rahman R. A., Kuenecke J., Koenig T., Horn H., Sommer W., et al., Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production, Neuropsychologia, 2011, 49, 3989–3998

    Article  PubMed  Google Scholar 

  36. Moliadze V., Antal A., Paulus W., Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes, Clin. Neurophysiol., 2010, 121, 2165–2171

    Article  PubMed  Google Scholar 

  37. Datta A., Bansal V., Diaz J., Patel J., Reato D., Bikson M., Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad, Brain Stimul., 2009, 2, 201–207

    Article  PubMed  Google Scholar 

  38. Datta A., Truong D., Minhas P., Parra L. C., Bikson M., Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models, Front. Psych., 2012, doi: 10.3389/fpsyt.2012.00091

    Google Scholar 

  39. Terney D., Chaieb L., Moliadze V., Antal A., Paulus W., Increasing human brain excitability by transcranial high-frequency random noise stimulation, J. Neurosci., 2008, 28, 14147–14155

    Article  PubMed  CAS  Google Scholar 

  40. Ambrus G. G., Paulus W., Antal A., Cutaneous perception thresholds of electrical stimulation methods: comparison of tDCS and tRNS, Clin. Neurophysiol., 2010, 121, 1908–1914

    Article  PubMed  Google Scholar 

  41. Chaieb L., Kovacs G., Cziraki C., Greenlee M., Paulus W., Antal A., Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex, Exp. Brain Res., 2009, 198, 439–444

    Article  PubMed  Google Scholar 

  42. Chaieb L., Paulus W., Antal A., Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability, Neural Plast., 2011, 105927

  43. Fertonani A., Pirulli C., Miniussi C., Random noise stimulation improves neuroplasticity in perceptual learning, J. Neurosci., 2011, 31, 15416–15423

    Article  PubMed  CAS  Google Scholar 

  44. Snowball A., Tachtsidis I., Popescu T., Thompson J., Delazer M., Zamarian L., et al., Inducing specific short- and long-term alterations in mathematical competence and cerebral haemodynamics using non-invasive brain stimulation (submitted)

  45. Kanai R., Chaieb L., Antal A., Walsh V., Paulus W., Frequency-dependent electrical stimulation of the visual cortex, Curr. Biol., 2008, 18, 1839–1843

    Article  PubMed  CAS  Google Scholar 

  46. Zaghi S., Acar M., Hultgren B., Boggio P. S., Fregni F., Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation, Neuroscientist, 2010, 16, 285–307

    Article  PubMed  Google Scholar 

  47. Wehr M., Laurent G., Odour encoding by temporal sequences of firing in oscillating neural assemblies, Nature, 1996, 384, 162–166

    Article  PubMed  CAS  Google Scholar 

  48. Gross J., Timmermann L., Kujala J., Dirks M., Schmitz F., Salmelin R., et al., The neural basis of intermittent motor control in humans, Proc. Natl. Acad. Sci. USA, 2002, 99, 2299–2302

    Article  PubMed  CAS  Google Scholar 

  49. Rutishauser U., Ross I. B., Mamelak A. N., Schuman E. M., Human memory strength is predicted by theta-frequency phase-locking of single neurons, Nature, 2010, 464, 903–907

    Article  PubMed  CAS  Google Scholar 

  50. Singer W., Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., 1993, 55, 349–374

    Article  PubMed  CAS  Google Scholar 

  51. Thut G., Miniussi C., Gross J., The functional importance of rhythmic activity in the brain, Curr. Biol., 2012, 22, R658–R663

    Article  PubMed  CAS  Google Scholar 

  52. Academy of Medical Sciences, British Academy, Royal Academy of Engineering, Royal Society, Human enhancement and the future of work: report from a joint workshop, 2012, http://www.acmedsci.ac.uk/p47prid102.html

    Google Scholar 

  53. Hyman S. E., Cognitive enhancement: promises and perils, Neuron, 2011, 69, 595–598

    Article  PubMed  CAS  Google Scholar 

  54. Wagner T., Velero-Cabre A., Pascual-Leone A., Noninvasive human brain stimulation, Annu. Rev. Biomed. Eng., 2007, 9, 527–565

    Article  PubMed  CAS  Google Scholar 

  55. Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., et al., Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation, Proc. Natl. Acad. Sci. USA, 2009, 106, 1590–1595

    Article  PubMed  CAS  Google Scholar 

  56. Cohen Kadosh R., Soskic S., Iuculano T., Kanai R., Walsh V., Modulating neuronal activity produces specific and long lasting changes in numerical competence, Curr. Biol., 2010, 20, 2016–2020

    Article  PubMed  CAS  Google Scholar 

  57. Stagg C. J., Jayaram G., Pastor D., Kincses Z. T., Matthews P. M., Johansen-Berg H., Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning, Neuropsychologia, 2011, 49, 800–804

    Article  PubMed  CAS  Google Scholar 

  58. Paulus W., Transcranial electrical stimulation (tES — tDCS; tRNS, tACS) methods, Neuropsychol. Rehabil., 2011, 21, 602–617

    Article  PubMed  Google Scholar 

  59. Rothwell J. C., Clinical applications of noninvasive electrical stimulation: problems and potential, Clin. EEG Neurosci., 2012, 43, 209–214

    Article  PubMed  Google Scholar 

  60. Flöel A., Rösser N., Michka O., Knecht S., Breitenstein C., Noninvasive brain stimulation improves language learning, J. Cogn. Neurosci., 2008, 20, 1415–1422

    Article  PubMed  Google Scholar 

  61. Turkeltaub P. E., Benson J., Hamilton R. H., Datta A., Bikson M., Coslett H. B., Left lateralizing transcranial direct current stimulation improves reading efficiency, Brain Stimul., 2012, 5, 201–207

    Article  PubMed  Google Scholar 

  62. Vines B. W., Norton A. C., Schlaug G., Non-invasive brain stimulation enhances the effects of melodic intonation therapy, Front. Psychol., 2011, 2, 230

    Article  PubMed  Google Scholar 

  63. Flöel A., Meinzer M., Kirstein R., Nijhof S., Deppe M., Knecht S., et al., Short-term anomia training and electrical brain stimulation, Stroke, 2011, 42, 2065–2067

    Article  PubMed  Google Scholar 

  64. Fridriksson J., Richardson J. D., Baker J. M., Rorden C., Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study, Stroke, 2011, 42, 819–821

    Article  Google Scholar 

  65. Baker J. M., Rorden C., Fridriksson J., Using transcranial direct-current stimulation to treat stroke patients with aphasia, Stroke, 2010, 41, 1229–1236

    Article  PubMed  Google Scholar 

  66. Sparing R., Thimm M., Hesse M. D., Küst J., Karbe H., Fink G. R., Bidirectional alterations of interhemispheric parietal balance by noninvasive cortical stimulation, Brain, 2009, 132, 3011–3020

    Article  PubMed  CAS  Google Scholar 

  67. Monti A., Cogiamanian F., Marceglia S., Ferrucci R., Mameli F., Mrakic-Sposta S., et al., Improved naming after transcranial direct current stimulation in aphasia, J. Neurol. Neurosurg. Psychiatry, 2008, 79, 451–453

    Article  PubMed  CAS  Google Scholar 

  68. Lindenberg R., Renga V., Zhu L.L., Nair D., Schlaug G., Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients, Neurology, 2010, 75, 2176–2184

    Article  PubMed  CAS  Google Scholar 

  69. Gladwin T. E., den Uyl T. E., Fregni F. F., Wiers R. W., Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task, Neurosci. Lett., 2012, 512, 33–37

    Article  PubMed  CAS  Google Scholar 

  70. Teo F., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B., Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls, Front. Psychiatry, 2011, 2, 45

    Article  PubMed  Google Scholar 

  71. Sandrini M., Fertonani A., Cohen L. G., Miniussi C., Double dissociation of working memory load effects induced by bilateral parietal modulation, Neuropsychologia, 2012, 50, 396–402

    Article  PubMed  Google Scholar 

  72. Cattaneo Z., Pisoni A., Papagno C., Transcranial direct current stimulation over Broca’s region improves phonemic and semantic fluency in healthy individuals, Neuroscience, 2011, 183, 64–70

    Article  PubMed  CAS  Google Scholar 

  73. Hsu T.-Y., Tseng L.-Y., Yu J.-X., Kuo W.-J., Hung D.L., Tzeng O.J., et al., Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex, Neuroimage, 2011, 56, 2249–2257

    Article  PubMed  Google Scholar 

  74. Sela T., Ivry R. B., Lavidor M., Prefrontal control during a semantic decision task that involves idiom comprehension: a transcranial direct current stimulation study, Neuropsychologia, 2012, 50, 2271–2280

    Article  PubMed  Google Scholar 

  75. Antal A., Chaieb L., Moliadze V., Monte-Silva K., Poreisz C., Thirugnanasambandam N., et al., Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans, Brain Stimul., 2010, 3, 230–237

    Article  PubMed  Google Scholar 

  76. Poreisz C., Boros K., Antal A., Paulus W., Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients, Brain Res. Bull., 2007, 72, 208–214

    Article  PubMed  Google Scholar 

  77. Cohen Kadosh R., Levy N., O’Shea J., Shea N., Savulescu J., The neuroethics of non-invasive brain stimulation, Curr. Biol., 2012, 22, R108–R111

    Article  PubMed  CAS  Google Scholar 

  78. Zimerman M., Hummel F. C., Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects, Front. Aging Neurosci., 2010, 2, 149

    Article  PubMed  Google Scholar 

  79. Berryhill M. E., Jones K. T., tDCS selectively improves working memory in older adults with more education, Neurosci. Lett., 2012, 521, 148–151

    Article  PubMed  CAS  Google Scholar 

  80. Ross L. A., McCoy D., Wolk D. A., Coslett H. B., Olson I.R., Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes, Front. Aging Neurosci., 2011, 3, 16

    Article  PubMed  Google Scholar 

  81. Flöel A., Suttorp W., Kohl O., Kürten J., Lohmann H., Breitenstein C., et al., Non-invasive brain stimulation improves object-location learning in the elderly, Neurobiol. Aging, 2012, 33, 1682–1689

    Article  PubMed  Google Scholar 

  82. Hummel F. C., Heise K., Celnik P., Floel A., Gerloff C., Cohen L. G., Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex, Neurobiol. Aging, 2010, 31, 2160–2168

    Article  PubMed  Google Scholar 

  83. Krause B., Cohen Kadosh R., How transcranial electrical stimulation (TES) can improve learning disabilities: a new perspective for cognitive training, submitted

  84. Levy N., Clarke S., Neuroethics and psychiatry, Curr. Opin. Psych., 2008, 21, 568–571

    Article  Google Scholar 

  85. Hilgetag C. C., Theoret H., Pascual-Leone A., Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex, Nat. Neurosci., 2001, 4, 953–957

    Article  PubMed  CAS  Google Scholar 

  86. Cohen Kadosh R., Iuculano T., Brain stimulation to the PPC and DLPFC reveals double dissociation between learning and automaticity, In: 17th Annual meeting of the organization for human brain mapping, Quebec City, Canada, Hum. Brain Mapp. Suppl., 2011, abstr. 2312

    Google Scholar 

  87. Cohen Kadosh R., Gertner L., Terhune D. B., Exceptional abilities in the spatial representation of numbers and time: insights from synaesthesia, Neuroscientist, 2012, 18, 208–215

    Article  PubMed  Google Scholar 

  88. Cohen Kadosh K., Cohen Kadosh R., Dick F., Johnson M. H., Developmental changes in effective connectivity in the emerging core face network, Cereb. Cortex, 2011, 21, 1389–1394

    Article  PubMed  Google Scholar 

  89. Cohen Kadosh K., Johnson M. H., Dick F., Cohen Kadosh R., Blakemore S. J., Effects of age, task performance and structural brain development on face processing, Cereb. Cortex, 2012, doi: 10.1093/ cercor/bhs150 [Epub ahead of print]

    Google Scholar 

  90. Giedd J. N., Rapoport J. L., Structural MRI of pediatric brain development: what have we learned and where are we going?, Neuron, 2010, 67, 728–734

    Article  PubMed  CAS  Google Scholar 

  91. Beddington J., Cooper C. L., Field J., Goswami U., Huppert F. A., Jenkins R., et al., The mental wealth of nations, Nature, 2008, 455, 1057–1059

    Article  PubMed  CAS  Google Scholar 

  92. Hamilton R., Messing S., Chatterjee A., Rethinking the thinking cap, Neurology, 2011, 76, 187–193

    Article  PubMed  Google Scholar 

  93. Schermer M., On the argument that enhancement is “cheating”, J. Med. Ethics, 2008, 34, 85–8

    Article  PubMed  CAS  Google Scholar 

  94. Cogiamanian F., Marceglia S., Ardolino G., Barbieri S., Priori A., Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas, Eur. J. Neurosci., 2007, 26, 242–249

    Article  PubMed  CAS  Google Scholar 

  95. Pascual-Leone A., Walsh V., Fast backprojections from the motion to the primary visual area necessary for visual awareness, Science, 2001, 292, 510–512

    Article  PubMed  CAS  Google Scholar 

  96. Born R. T., Bradley D.C., Structure and function of visual area MT, Annu. Rev. Neurosci., 2005, 28, 157–189

    Article  PubMed  CAS  Google Scholar 

  97. Adee S., Zap your brain into the zone: fast track to pure focus, In: New Scientist, London, UK: Reed Elsevier, 06/02/2012

  98. You D. S., Kim D.-Y., Chun M. H., Jung S. E., Park S. J., Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients, Brain Lang., 2011, 119, 1–5

    Article  PubMed  Google Scholar 

  99. Marangolo P., Marinelli C. V., Bonifazi S., Fiori V., Ceravolo M. G., Provinciali L., et al., Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics, Behav. Brain Res., 2011, 225, 498–504

    Article  PubMed  CAS  Google Scholar 

  100. Fiori V., Coccia M., Marinelli C. V., Vecchi V., Bonifazi S., Ceravolo M. G., et al., Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects, J. Cogn. Neurosci., 2010, 23, 2309–2323

    Article  PubMed  Google Scholar 

  101. Schneider H. D., Hopp J. P., The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism, Clin. Linguist. Phon. 2011, 25, 640–654

    Article  PubMed  Google Scholar 

  102. Ferrucci R., Mameli F., Guidi I., Mrakic-Sposta S., Vergari M., Marceglia S., et al., Transcranial direct current stimulation improves recognition memory in Alzheimer disease, Neurology, 2008, 71, 493–498

    Article  PubMed  CAS  Google Scholar 

  103. Boggio P. S., Ferrucci R., Mameli F., Martins D., Martins O., Vergari M., et al., Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease, Brain Stimul., 2011, 5, 223–230

    Article  PubMed  Google Scholar 

  104. Bolognini N., Fregni F., Casati C., Olgiati E., Vallar G., Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills, Brain Res., 2010, 1349, 76–89

    Article  PubMed  CAS  Google Scholar 

  105. Feurra M., Bianco G., Santarnecchi E., Del Testa M., Rossi A., Rossi S., Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials, J. Neurosci., 2011, 31, 12165–12170

    Article  PubMed  CAS  Google Scholar 

  106. Mulquiney P. G., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B., Improving working memory: Exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex, Clin. Neurophysiol., 2011, 122, 2384–2389

    Article  PubMed  Google Scholar 

  107. Ohn S. H., Park C.-I., Yoo W.-K., Ko M.-H., Choi K. P., Kim G.-M., et al., Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory, Neuroreport, 2008, 19, 43–47

    Article  PubMed  Google Scholar 

  108. Jacobson L., Goren N., Lavidor M., Levy D. A., Oppositional transcranial direct current stimulation (tDCS) of parietal substrates of attention during encoding modulates episodic memory, Brain Res., 2012, 1439, 66–72

    Article  PubMed  CAS  Google Scholar 

  109. Ditye T., Jacobson L., Walsh V., Lavidor M., Modulating behavioral inhibition by tDCS combined with cognitive training, Exp. Brain Res., 2012, 219, 363–368

    Article  PubMed  Google Scholar 

  110. Weiss M., Lavidor M., When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities, J. Cogn. Neurosci., 2012, 24, 1826–1833

    Article  PubMed  Google Scholar 

  111. Sparing R., Dafotakis M., Meister I.G., Thirugnanasambandam N., Fink G. R., Enhancing language performance with non-invasive brain stimulation — a transcranial direct current stimulation study in healthy humans, Neuropsychologia, 2008, 46, 261–268

    Article  PubMed  Google Scholar 

  112. de Vries M. H., Barth A. C., Maiworm S., Knecht S., Zwitserlood P., Floel A., Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar, J. Cogn. Neurosci., 2010, 22, 2427–2436

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roi Cohen Kadosh.

About this article

Cite this article

Kadosh, R.C. Using transcranial electrical stimulation to enhance cognitive functions in the typical and atypical brain. Translat.Neurosci. 4, 20–33 (2013). https://doi.org/10.2478/s13380-013-0104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0104-7

Keywords

Navigation