Skip to main content
Log in

Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, Florida

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The basal area and productivity of managrove wetlands are described in relation to selected soil properties to understand the general pattern of optimum forest stature at the mouth of estuaries in the Everglades, such as the Shark River Slough, Florida (U.S.). The basal area of mangroves decreases from 40.4 m2 ha−1 and 39.7 m2 ha−1 at two stations 1.8 km and 4.1 km from the estuary mouth to 20.7 m2 ha−1 and 19.6 m2 ha−1 at two sites 9.9 km and 18.2 km from the mouth, respectively. The gradient in basal area at these four sites is mostly the result of approximately 34 yr of growth since Hurricane Donna. Wood productivity is higher in the lower estuary (10.7 Mg ha−1 yr−1 and 12.0 Mg ha−1 yr−1) than in the upper estuary (3.2 Mg ha−1 yr−1 and 4.2 Mg ha−1 yr−1). Porewater salinity among these four mangrove sites during seasonal sampling in 1994 and 1995 ranged from 1.6 g kg−1 to 33.5 g kg−1, while sulfide was generally<0.15 mM at all sites. These soil values indicate that abiotic stress cannot explain the decrease in forest structure along this estuarine gradient. Concentrations of nitrogen (N) and phosphorus (P) are more closely related to patterns of forest development, with higher soil fertility at the mouth of the estuary as indicated by higher concentrations of extractable ammonium, total soil P, and available P, along with higher ammonium production rates. The more fertile sites of the lower estuary are dominated by Laguncularia racemosa, whereas the less fertile sites in the intermediate and upper estuary are dominated by Rhizophora mangle. Relative N mineralization per unit of total N is higher in the lower estuary and is related positively to concentrations of available P, indicating the importance of turnover rates and nutrient interactions to soil fertility. Concentrations of Ca-bound P per volume soil in the lower estuary is 40-fold higher than in the upper estuary, and along with an increase in residual P in the upper estuary, indicate a shift from mineral to organic P along the estuarine gradient. Mineral inputs to the mouth of Shark River estuary from the Gulf of Mexico (rather than upland inputs) apparently control the patterns of mangrove structure and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alongi, D. M., K. G. Boto, and A. I. Robertson. 1992. Nitrogen and phosphorous cycles. p. 252–292. In A. I. Robertson and D. M. Alongi (eds.) Tropical Mangrove Ecosystems. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Alongi, D. M., P. Christoffersen, and F. Tirendi. 1993. The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. Journal of Experimental Marine Biology and Ecology 172:201–223.

    Article  Google Scholar 

  • Aspila, K. I., H. Agemian, and A. S. Y. Chau. 1976. A semiautomated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197.

    Article  CAS  Google Scholar 

  • Binkley, D. and P. Vitousek. 1989. Soil nutrient availability, p. 75–96. In R. W. Pearcy, J. Ehleringer, H. A. Mooney and P. W. Rundel (eds.) Plant Physiological Ecology—Field Methods and Instrumentation. Chapman & Hall London.

    Google Scholar 

  • Blasco, F. 1984. Climatic factors and the biology of mangrove plants, p. 18–35. In S. C. Snedaker and J. G. Snedaker (eds.), The Mangrove Ecosystem: Research Methods. United Nations Educational, Scientific and Cultural Organization, Paris.

    Google Scholar 

  • Boon, P. I., D. J. W. Moriarty, and P. G. Saffigna. 1986. Rates of ammonium turnover and the role of amino-acid deamination in seagrass (Zostera capricorni) beds of Moreton Bay, Australia. Marine Biology 91:259–268.

    Article  CAS  Google Scholar 

  • Boto, K. G. and J. T. Wellington 1984. Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries 7:61–69.

    Article  CAS  Google Scholar 

  • Boto, K. G., J. S. Bunt, and J. T. Wellington 1984. Variations in mangrove forest productivity in northern Australia and Papua New Guinea. Estuarine, Coastal and Shelf Science 19:321–330.

    Article  Google Scholar 

  • Bowden, W. B. 1984. A nitrogen-15 isotope dilution study of ammonium production and consumption in a marsh sediment. Limnology and Oceanography 29:1004–1015.

    CAS  Google Scholar 

  • Boyer, J. N., J. W. Fourqurean, and R. D. Jones. 1997. Spatial characterization of water quality of Florida Bay and Whitewater Bay by multivariate analyses: Zones of similar influence. Estuaries 20:743–758.

    Article  CAS  Google Scholar 

  • Carilson, P. R. and L. A. Yarbro. 1988. Physical and biological control of mangrove pore water chemistry, p. 112–132. In D. D. Hook, W. H. McKee, Jr., and H. K. Smith, (eds.) The Ecology and Management of Wetlands. Tumber Press. Portland, Oregon.

    Google Scholar 

  • Carlson, P. R., L. A. Yarbro, C. F. Zimmermann, and J. R. Montgomery. 1983. Pore water chemistry of an overwash mangrove island. Florida Scientist 46:239–249.

    CAS  Google Scholar 

  • Carter, M. R., L. A. Burns, T. R. Cavinder, K. R. Dugger, P. L. Fore, D. E. Hicks, H. L. Revells, and A. W. Schmidt. 1973. Ecosystem Analysis of the Big Cypress Swamp and Estuaries. EPA 904/9-74-002. United States Environmental Protection Agency, Region 4, Atlanta, Georgia.

    Google Scholar 

  • Chapman, V. J. 1944. Cambridge University expedition to Jamaica. I. A study of the botanical processes concerned in the development of the jamaican shore-line. Journal of the Linnean Society of London Botany 52:407–447.

    Article  Google Scholar 

  • Chapman, V. J. 1976. Mangrove Vegetation. J. Cramer, Vaduz, Germany.

    Google Scholar 

  • Chen, R. H. 1996. Ecological analysis and simulation models of landscape patterns in mangrove forest development and soil characteristics along the Shark River estuary, Florida. Ph.D. Dissertation, University of Southwestern Louisiana, Lafayette, Louisiana.

    Google Scholar 

  • Chen, R. and R. R. Twilley. 1998. A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. Journal of Ecology 86:37–52.

    Article  Google Scholar 

  • Chen, R. and R. R. Twilley. 1999. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44:93–118.

    Google Scholar 

  • Cintrón, G., A. E. Lugo, D. J. Pool, and G. Morris 1978. Mangroves of arid environments in Puerto Rico and adjacent islands. Biotrophica 10:110–121.

    Article  Google Scholar 

  • Cintrón, G. and Y. Schaeffer-Novelli 1984a. Caracteristicas y desarrollo estructural de los manglares de Norte y Sur America. Programa Regional de Desarrollo Cientifico y Tecnologico 25:4–15.

    Google Scholar 

  • Cintrón, G. and Y. Schaeffer-Novelli. 1984b. Methods for studying mangrove structure, p. 91–113. In S. C. Snedaker and J. G. Snedaker (eds.), The Mangrove Ecosystem: Research Methods. United Nations Educational, Scientific and Cultural Organization, Paris.

    Google Scholar 

  • Craft, C. B. and C. J. Richardson. 1993a. Peat accretion and phosphorus accumulation along an eutrophication gradient in the northern Everglades. Biogeochemistry 22:133–156.

    Article  CAS  Google Scholar 

  • Craft, C. B. and C. J. Richardson. 1993b. Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecological Applications 3: 446–458.

    Article  Google Scholar 

  • Craighead, F. C. and V. C. Gilbert. 1962. The effects of Hurricane Donna on the vegetation of southern Florida. The Quarterly Journal of the Florida Academy of Sciences 25:1–28.

    Google Scholar 

  • Davis, Jr., J. H. 1940. The ecology and geologic role of mangroves in Florida. Carnegie Institute of Washington Publication 517, 32:303–412.

    Google Scholar 

  • Davis, S. M. 1991. Growth, decomposition, and nutrient retention of Cladium jamaicens Crantz and Typha domingensis Pers in Florida Everglades. Aquatic Botany 40:203–224.

    Article  Google Scholar 

  • Davis, S. M. 1994. Phosphorus inputs and vegetation sensitivity in the Everglades, p. 357–378. In S. M. Davis and J. C. Ogden (eds.). Everglades: The Ecosystem and its Restoration. St. Lucie Press Delray Beach, Florida.

    Google Scholar 

  • Day, J. W., W. H. Conner, F. Ley-Lou, R. H. Day, and A. M. Navarro 1987. The productivity and composition of mangrove forests, Laguna de Términos, Mexico. Aquatic Botany 27: 267–284.

    Article  Google Scholar 

  • DeBusk, W. F., K. R. Reddy, M. S. Koch, and Y. Wang. 1994. Spatial distribution of soil nutrients in a northern Everglades marsh: Water Conservation Area 2A. Soil Science Society of America Journal 58:543–552.

    Google Scholar 

  • DeKanel, J. and J. W. Morse. 1978. The chemistry of orthophosphate uptake from seawater on to calcite and aragonite. Geochimica et Cosmochimica Acta 42:1335–1340.

    Article  CAS  Google Scholar 

  • Diamond, J. 1986. Overview: Laboratory experiments, field experiments, and natural experiments, p. 3–22. In J. Diamond and T. J. Case (eds.) Community Ecology. Harper and Row, New York.

    Google Scholar 

  • Duever, M. J., J. F. Meeder, L. C. Meeder, and J. M. McCollom. 1994. The climate of south Florida and its role in shaping the Everglades ecosystem, p. 225–248. In S. M. Davis and J. C. Ogden (eds.). Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • Duke, N. C. 1992. Mangrove floristics and biogeography, p. 63–100. In A. I. Robertson and D. M. Alongi (eds.) Tropical Mangrove Ecosystems. American Geophysical Union. Washington, D.C.

    Google Scholar 

  • Feller, I. C. 1995. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecological Monographs 54:477–505.

    Article  Google Scholar 

  • Fourquerean, J. W., J. C. Zieman, and G. V. N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnology and Oceanography 37:162–171.

    Google Scholar 

  • Gale, P. M., K. R. Reddy, and D. A. Graetz. 1994. Phosphorus retention by wetland soils used for treated wastewater disposal. Journal of Environmental Quality 23:370–377.

    CAS  Google Scholar 

  • Heald, E. J. 1969. The production of organic detritus in a south Florida estuary. Ph.D. Dissertation, University of Miami Coral Gables, Florida.

    Google Scholar 

  • Hesse, P. R. 1962. Phosphorus fixation in mangrove swamp muds. Nature 193:295–296.

    Article  CAS  Google Scholar 

  • Hieltjes, A. H. M. and L. Lijlema. 1980. Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality 9:405–407.

    CAS  Google Scholar 

  • Koch, M. S. 1996. Resource availability and abiotic stress effects on Rhizophora mangle L. (Red mangrove) development in south Florida. Ph.D. Dissertation, University of Miami, Coral Gables, Florida.

    Google Scholar 

  • Koch, M. S. and K. R. Reddy. 1992. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Science Society of America Journal 56:1492–1499.

    Google Scholar 

  • Koch, M. S. and S. C. Snedaker. 1997. Factors influencing Rhizophora mangle L. seedling development in Everglades carbonate soils. Aquatic Botany 59:87–98.

    Article  Google Scholar 

  • Lawton-Thomas, L. L. 1997. Canopy retranslocation and litter immobilization of nitrogen and phosphorus in three mangrove species along the Shark River estuary, Florida. M.S. Thesis, University of Southwestern Louisiana. Lafayette, Louisiana.

    Google Scholar 

  • Light, S. S. and J. W. Dineen. 1994. Water control in the Everglades: An historical perspective, p. 47–84. In S. M. Davis and J. C. Ogden (eds.), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • Lugo, A. E. 1978. Stress and ecosystems, p. 62–101. In J. H. Thorp and J. W. Gibbons (eds.), Energy and Environmental Stress. DOE 771114. Department of Energy, Washington, D.C.

    Google Scholar 

  • Lugo, A. E. 1997. Old-growth mangrove forests in the United States. Conservation Biology 11:11–20.

    Article  Google Scholar 

  • Lugo, A. E. and S. C. Snedaker 1974. The ecology of mangroves. Annual Review of Ecology and Systematics 5:39–64.

    Article  Google Scholar 

  • Lugo, A. E., S. Brown, and M. M. Brinson 1988. Forested wetlands in freshwater and salt-water environments. Limnology and Oceanography 33:894–909.

    Article  CAS  Google Scholar 

  • McGlathery, K. J., R. Marino, and R. W. Howarth. 1994. Variable rates of phosphate uptake by shallow marine carbonate sediments: Mechanisms and ecological significance. Biogeochemistry 25:127–146.

    Article  CAS  Google Scholar 

  • McIvor, C. C., J. J. Ley, and R. D. Bjork. 1994. Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes: A review, p. 117. In S. M. Davis and J. C. Ogden (eds.) Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • McKee, K. L. 1993. Soil physicochemical patterns and mangrove species distribution—Reciprocal effects? Journal of Ecology 81: 477–487.

    Article  Google Scholar 

  • McKee, K. L. 1995. Seedling recruitment patterns in a Belizean mangrove forest: Effects of establishment ability and physicochemical factors. Oecologia 101:448–460.

    Article  Google Scholar 

  • McKee, K. L., I. A. Mendelssohn, and M. W. Hester. 1988. Reexamination of pore water sulfide concentration and redox potential near the aerial roots of Rhizophora mangle and Avicennia germinans. American Journal of Botany 75:1352–1359.

    Article  Google Scholar 

  • Nickerson, H. H. and F. R. Thibodeau. 1985. Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry 1:183–192.

    Article  Google Scholar 

  • Odum, W. E., C. C. McIvor, and T. J. Smith, III. 1982. The ecology of the mangroves of south Florida: A community profile FWS/OBS-81/24. United States Fish and Wildlife Service/Office of Biological Services, Washington, D.C.

    Google Scholar 

  • Odum, W. E., T. J. Smith, III, J. K. Hoover, and C. McIvor. 1984. The ecology of tidal freshwater marshes of the tidal freshwater marshes of the United States East Coast: A com-munity profile. FWS/OBS-83/17. United States Fish and Wildlife Service. Washington, D.C.

    Google Scholar 

  • Olsen, S. R. and L. E. Sommers. 1982. Phosphorus, p. 403–430. In A. L. Page, R. H. Miller, and D. R. Keeney (eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy and Soil Science Society of America. Madison, Wisconsin.

    Google Scholar 

  • Parsons, T. R., Y. Maita, and C. M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York.

    Google Scholar 

  • Pastor, J., M. A. Stillwell, and D. Tilman. 1987. Nitrogen mineralization and nitrification in four Minnesota old fields. Oecologia 71:481–485.

    Article  Google Scholar 

  • Powell, A. B., D. E. Hoss, W. F. Hettler, D. Peters, and S. Wagner. 1989. Abundance and distribution of ichthyoplankton in Florida Bay and adjacent waters. Bulletin of Marine Science 44:35–48.

    Google Scholar 

  • Provost, M. W. 1973. Mean high water mark and use of tidelands in Florida. Florida Scientist 36:50–66.

    Google Scholar 

  • Reddy, K. R., R. D. DeLaune, W. F. DeBusk, and M. S. Koch. 1993. Long-term nutrient accumulation rates in the Everglades. Soil Science Society of America Journal 57:1147–1155.

    CAS  Google Scholar 

  • Rivera-Monroy, V. H. and R. R. Twilley. 1996. The relative role of denitrification and immobilization on the fate of inorganic nitrogen in mangrove sediments of Terminos Lagoon, Mexico. Limnology and Oceanography 41:284–296.

    Article  CAS  Google Scholar 

  • Rivera-Monroy, V. H., R. R. Twilley, R. Boustany, J. W. Day, Jr., F. Vera-Herrera, and M. Ramirez. 1995. Direct denitrification in mangrove sediments in Terminos Lagoon, Mexico. Marine Ecology Progress Series 126:97–109.

    Article  Google Scholar 

  • Rosenfeld, J. K. 1979. Interstitial water and sediment chemistry of two cores from Florida Bay. Journal of Sedimentary Petrology 49:989–994.

    CAS  Google Scholar 

  • Smith, III, T. J., K. G. Boto, S. D. Frusher, and R. L. Giddins. 1991. Keystone species and mangrove forest dynamics: The influence of burrowing by crabs on soil nutrient status and forest productivity. Estuarine, Coastal and Shelf Science 33:419–432.

    Article  CAS  Google Scholar 

  • Smith, III, T. J., M. B. Robblee, H. R. Wanless, and T. W. Doyle. 1994. Mangroves, hurricanes, and lightning strikes. BioScience 44:256–262.

    Article  Google Scholar 

  • Strickland, J. D. H. and T. R. Parsons. 1972. A practical handbooks of sea-water analysis. Fisheries Research Board of Canada 167:1–310.

    Google Scholar 

  • Thom, B. 1967. Mangrove ecology and deltaic morphology: Tabasco, Mexico. Journal of Ecology 55:301–343.

    Article  Google Scholar 

  • Thom, B. G. 1982. Mangrove ecology—A geomorphological perspective, p. 3–17. In B. F. Clough (ed.), Mangrove Ecosystems in Australia. Australian National University Press, Canberra, Australia.

    Google Scholar 

  • Thom, B. G. 1984. Coastal landforms and geomorphic processes, p. 3–17. In S. C. Snedaker and J. G. Snedaker (eds.), The Mangrove Ecosystem: Research Methods. United Nations Educational, Scientific and Cultural Organization, Paris.

    Google Scholar 

  • Thomas, T. M. 1974. A detailed analysis of climatological and hydrological records of south Florida with reference to man's influence upon ecosystem evolution, p. 82–122. In P. J. Gleason (ed.), Environments of South Florida, Present and Past, Memoir 2. Miami Geological Society, Miami.

    Google Scholar 

  • Tomlinson, P. B. 1986. The Botany of Mangroves. Cambridge University Press, Cambridge.

    Google Scholar 

  • Twilley, R. R. 1985. The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary. Estuarine, Coastal and Shelf Science 20:543–557.

    Article  CAS  Google Scholar 

  • Twilley, R. R. 1995. Properties of mangrove ecosystems related to the energy signature of coastal environments, p. 43–62. In C. Hall (ed.), Maximum Power. University of Colorado Press, Boulder, Colorado.

    Google Scholar 

  • Twilley, R. R. 1997. Mangrove wetlands, p. 445–473. In M. Messina and W. Connor (eds.), Southern Forested Wetlands: Ecology and Management. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Twilley, R. R. and R. Chen 1998. A water budget and hydrology model of a basin mangrove forest in Rookery Bay, Florida. Australian Journal of Freshwater and Marine Research. 49:309–323.

    Article  CAS  Google Scholar 

  • Twilley, R. R., A. E. Lugo, and C. Patterson-Zucca. 1986. Production, standing crop, and decomposition of litter in basin mangrove forests in southwest Florida. Ecology 67:670–683.

    Article  Google Scholar 

  • Walsh, G. E. 1974. Mangroves: A review, p. 51–174. In R. Reimold and W. Queen (eds.), Ecology of Halophytes. Academic Press, New York.

    Google Scholar 

  • Watson, J. 1928. Mangrove forests of the Malay Peninsula. Malayan Forest Records 6. Fraser & Neave, Ltd., Singapore.

    Google Scholar 

  • Woodroffe, C. D. 1992. Mangrove sediments and geomorphology, p. 7–41. In A. I. Robertson and D. M. Alongi (eds.), Tropical Mangrove Ecosystems, American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Zwolsman, J. G. 1994. Seasonal variability and biogeochemistry of phosphorus in the Scheldt estuary, south-west Netherlands. Estuarine, Coastal and Shelf Science 39:227–248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Twilley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Twilley, R.R. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, Florida. Estuaries 22, 955–970 (1999). https://doi.org/10.2307/1353075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2307/1353075

Keywords

Navigation