Skip to main content
Log in

Glutamate Receptors and Nociception

Implications for the Drug Treatment of Pain

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Evidence from the last several decades indicates that the excitatory amino acid glutamate plays a significant role in nociceptive processing. Glutamate and glutamate receptors are located in areas of the brain, spinal cord and periphery that are involved in pain sensation and transmission. Glutamate acts at several types of receptors, including ionotropic (directly coupled to ion channels) and metabotropic (directly coupled to intracellular second messengers). Ionotropic receptors include those selectively activated by N-methyl-D-aspartate, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate. Metabotropic glutamate receptors are classified into 3 groups based on sequence homology, signal transduction mechanisms and receptor pharmacology.

Glutamate also interacts with the opioid system, and intrathecal or systemic coadministration of glutamate receptor antagonists with opioids may enhance analgesia while reducing the development of opioid tolerance and dependence. The actions of glutamate in the brain seem to be more complex. Activation of glutamate receptors in some brain areas seems to be pronociceptive (e.g. thalamus, trigeminal nucleus), although activation of glutamate receptors in other brain areas seems to be antinociceptive (e.g. periaqueductal grey, ventrolateral medulla).

Application of glutamate, or agonists selective for one of the several types of glutamate receptor, to the spinal cord or periphery induces nociceptive behaviours. Inhibition of glutamate release, or of glutamate receptors, in the spinal cord or periphery attenuates both acute and chronic pain in animal models. Similar benefits have been seen in studies involving humans (both patients and volunteers); however, results have been inconsistent. More research is needed to clearly define the role of existing treatment options and explore the possibilities for future drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992; 258: 597–603

    Article  PubMed  CAS  Google Scholar 

  2. MacDermott AB, Mayer ML, Westbrook GL, et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 1986; 321: 519–22

    Article  PubMed  CAS  Google Scholar 

  3. Mayer ML, MacDermott AB, Westbrook GL, et al. Agonist-and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using Arsenazo III. J Neurosci 1987; 7: 3230–44

    PubMed  CAS  Google Scholar 

  4. Nowak L, Bregstovski P, Ascher P, et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984; 307: 462–5

    Article  PubMed  CAS  Google Scholar 

  5. Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984; 309: 261–3

    Article  PubMed  CAS  Google Scholar 

  6. Cotman CW, Monaghan DT. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Ann Rev Neurosci 1988; 11: 61–80

    Article  PubMed  CAS  Google Scholar 

  7. Holleman M, Heineman S. Cloned glutamate receptors. Ann Rev Neurosci 1994; 17: 31–108

    Article  Google Scholar 

  8. Kemp JA, Leeson PD. The glycine site of the NMDA receptor: five years on. Trends Pharmacol Sci 1993; 14: 20–5

    Article  PubMed  CAS  Google Scholar 

  9. Lodge D, Johnson KM. Noncompetitive excitatory amino acid receptor antagonists. In: Lodge D, Collingridge GL, editors. Trends in pharmacological science, special report: The pharmacology of excitatory amino acids. Cambridge: Elsevier, 1991:13–8

    Google Scholar 

  10. Scott RH, Sutton KG, Dolphin AC. Interactions of polyamines with neuronal ion channels. Trends Neurosci 1993; 16: 153–60

    Article  PubMed  CAS  Google Scholar 

  11. Sucher NJ, Awobuluyi M, Choi Y-B, et al. NMDA receptors: from genes to channels. Trends Pharmacol Sci 1996; 17: 348–55

    PubMed  CAS  Google Scholar 

  12. Moriyoshi K, Masu M, Ishiik T, et al. Molecular cloning and characterization of the rat NMDA receptor. Nature 1991; 354: 31–7

    Article  PubMed  CAS  Google Scholar 

  13. Ishii I, Moriyoshi K, Sugihara H, et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 1993; 268: 2836–43

    PubMed  CAS  Google Scholar 

  14. Meguro H, Mori H, Araki K, et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 1992; 357: 70–4

    Article  PubMed  CAS  Google Scholar 

  15. Kutsuwada T, Kashiwabuchi N, Mori H, et al. Molecular diversity of the NMDA receptor channel. Nature 1992; 358: 36–41

    Article  PubMed  CAS  Google Scholar 

  16. Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 1992; 256: 1217–21

    Article  PubMed  CAS  Google Scholar 

  17. Ikeda K, Nagasawa M, Mori H, et al. Cloning and expression of the epsilon 4 subunit of the NMDA receptor channel. FEBS Lett 1992; 313: 34–8

    Article  PubMed  CAS  Google Scholar 

  18. Mao J, Price DD, Mayer DJ. Mechanisms of hyperalgesia and morphine tolerance: a current view of their possible interactions. Pain 1995; 62: 259–74

    Article  PubMed  CAS  Google Scholar 

  19. Morris R, Southam E, Gittins SR, et al. The NO-cGMP pathway in neonatal rat dorsal horn. Eur J Neurosci 1994; 6: 876–9

    Article  PubMed  CAS  Google Scholar 

  20. Murphy SN, Miller RJ. Regulation of Ca++ influx into striatal neurons by kainic acid. J Pharmacol Exp Ther 1989; 249: 184–93

    PubMed  CAS  Google Scholar 

  21. Miller RJ. The revenge of the kainate receptor. Trends Neurosci 1991; 14: 477–9

    Article  PubMed  CAS  Google Scholar 

  22. Sommer B, Seeburg PH. Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci 1992; 13: 291–6

    Article  PubMed  CAS  Google Scholar 

  23. Cull-Candy SG, Ogden DC. Ion channels activated by L-glutamate and GABA in cultured cerebellar neurons of the rat. Proc R Soc London-Series B: Biol Sci 1985; 224, 367–73

    Article  CAS  Google Scholar 

  24. Kiskin NI, Krishtal OA, Tsyndrenko AY. Excitatory amino acid receptors in hippocampal neurons: Kainate fails to desensitize them. Neurosci Lett 1986; 63: 225–30

    Article  PubMed  CAS  Google Scholar 

  25. Tang C-M, Dichter M, Morad M. Quisqualate activates a rapidly inactivating high conductance ionic channel in hippocampal neurons. Science 1989; 243: 1474–7

    Article  PubMed  CAS  Google Scholar 

  26. Trussell LO, Thio LL, Zorumski CF, et al. Rapid desensitization of glutamate receptors in vertebrate central neurons. Proc Natl Acad Sci USA 1988; 85: 4562–6

    Article  PubMed  CAS  Google Scholar 

  27. Gasic GP, Hollemann M. Molecular neurobiology of glutamate receptors. Ann Rev Physiol 1992; 54: 507–36

    Article  CAS  Google Scholar 

  28. Hollemann M, O’Shea-Greenfield A, Rogers SW, et al. Cloning by functional expression of a member of the glutamate receptor family. Nature 1989; 342: 643–8

    Article  Google Scholar 

  29. Keinanen K, Wisden W, Sommer B, et al. A family of AMPA-selective glutamate receptors. Science 1990; 249: 556–60

    Article  PubMed  CAS  Google Scholar 

  30. Bettler B, Boulter J, Hermans-Borgmeyer I, et al. Cloning of a novel glutamate receptor subunit, GluR5-expression in the nervous system during development. Neuron 1990; 5: 583–95

    Article  PubMed  CAS  Google Scholar 

  31. Bettler B, Egebjerg J, Sharma G, et al. Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 1992; 8: 257–65

    Article  PubMed  CAS  Google Scholar 

  32. Egebjerg J, Bettler B, Hermans-Borgmeyer I, et al. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 1991; 351: 745–8

    Article  PubMed  CAS  Google Scholar 

  33. Okamoto N, Hori S, Akazawa C, et al. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 1994; 269: 1231–6

    PubMed  CAS  Google Scholar 

  34. Saugstad JA, Kinzie JM, Mulvihill ER, et al. Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors. Mol Pharmacol 1994; 45: 367–72

    PubMed  CAS  Google Scholar 

  35. Duvoisin RM, Zhang C, Ramonell K. Glutamate receptor expressed in the retinal and olfactory bulb. J Neurosci 1995; 15: 3075–83

    PubMed  CAS  Google Scholar 

  36. Houamed KM, Kuijper JL, Gilbert TL, et al. Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 1991; 252: 1318–21

    Article  PubMed  CAS  Google Scholar 

  37. Abe T, Sugihara H, Nawa H, et al. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 1992; 267: 13361–8

    PubMed  CAS  Google Scholar 

  38. Masu M, Tanabe Y, Tsuchida K, et al. Sequence and expression of a metabotropic glutamate receptor. Nature 1991; 349: 760–5

    Article  PubMed  CAS  Google Scholar 

  39. Daggett LP, Sacaan AI, Akong M, et al. Molecular and functional characterization of recombinant human metabotropic glutamate receptor subtype 5. Neuropharmacology 1995; 34: 871–86

    Article  PubMed  CAS  Google Scholar 

  40. Martin LJ, Blackstone CD, Huganir RL, et al. Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 1992; 9: 259–70

    Article  PubMed  CAS  Google Scholar 

  41. Joly C, Gomeza J, Brabet I, et al. Molecular, functional, and pharmacological characterization of the metabotropic glutamate receptor type 5 splice variants: comparison with mGluR1. J Neurosci 1995; 15: 3970–81

    PubMed  CAS  Google Scholar 

  42. Pin J-P, Waeber C, Prezeau L, et al. Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc Natl Acad Sci 1992; 89: 10331–5

    Article  PubMed  CAS  Google Scholar 

  43. Conn PJ, Pin J-P. Pharmacology and function of metabotropic glutamate receptors. Ann Rev Pharmacol Toxicol 1997; 37: 205–37

    Article  CAS  Google Scholar 

  44. Hayashi Y, Sekiyama N, Nakanishi S, et al. Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. J Neurosci 1994; 14: 3370–7

    PubMed  CAS  Google Scholar 

  45. Ambrosini A, Meldolesi J. Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. J Neurochem 1989; 53: 825–33

    CAS  Google Scholar 

  46. Manzoni OJJ, Finiels-Marlier F, Sassetti I, et al. The glutamate receptor of the Qp-type activates protein kinase C and is regulated by protein kinase C. Neurosci Lett 1990; 109: 146–51

    Article  PubMed  CAS  Google Scholar 

  47. Schoepp DD, Conn PJ. Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 1993; 14: 13–25

    Article  PubMed  CAS  Google Scholar 

  48. Kapcala LP, Weng C-F, Juang H-H. Protein kinase C activators stimulate beta-endorphin secretion from hypothalamic cells. Brain Res Bull 1992; 29: 553–7

    Article  PubMed  CAS  Google Scholar 

  49. Graham LT, Shank PR, Werman R, et al. Distribution of some synaptic transmitter suspects in cat spinal cord. J Neurochem 1967; 14: 465–72

    Article  PubMed  CAS  Google Scholar 

  50. Johnson JL. The excitant amino acids glutamate and aspartic acid as transmitter candidates in the vertebrate central nervous system. Prog Neurobiol 1978; 10: 155–202

    Article  PubMed  CAS  Google Scholar 

  51. Miller KE, Clements JR, Larson AA, et al. Organization of glutamate-like immunoreactivity in the rat superficial dorsal horn: light and electron microscopic observations. J Comp Neurol 1988; 277: 28–36

    Google Scholar 

  52. Renno WM. Microdialysis of excitatory amino acids in the periaqueductal gray of the rat after unilateral peripheral inflammation. Amino Acids 1998; 14: 319–31

    Article  PubMed  CAS  Google Scholar 

  53. Sasaki M, Tohda C, Kuraishi Y. Region-specific increase in glutamate release from dorsal horn of rats with adjuvant inflammation. Neuroreport 1998; 9: 3219–22

    Article  PubMed  CAS  Google Scholar 

  54. Sluka KA, Willis WD. Increased spinal release of excitatory amino acids following intradermal injection of capsaicin is reduced by a protein kinase G inhibitor. Brain Res 1998; 798: 281–6

    Article  PubMed  CAS  Google Scholar 

  55. Al-Ghoul WM, Li Volsi G, Weinberg RJ, et al. Glutamate immunocytochemistry in the dorsal horn after injury or stimulation of the sciatic nerve of rats. Brain Res Bull 1993; 30: 453–9

    Article  PubMed  CAS  Google Scholar 

  56. Omote K, Kawamata T, Kawamata M, et al. Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Res 1998; 787: 161–4

    Article  PubMed  CAS  Google Scholar 

  57. Greenamyre JT, Young AB, Penny JB. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in the rat central nervous system. J Neurosci 1984; 4: 2133–44

    PubMed  CAS  Google Scholar 

  58. Monaghan DT, Cotman CW. Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci 1985; 5: 2909–19

    PubMed  CAS  Google Scholar 

  59. Jansen KL, Faull RL, Dragunow M, et al. Autoradiographic localisation of NMDA, quisqualate and kainic acid receptors in human spinal cord. Neurosci Lett 1990; 108: 53–7

    Article  PubMed  CAS  Google Scholar 

  60. Shaw PJ, Ince PG, Johnson M, et al. The quantitative autoradiographic distribution of [3H] MK-801 binding sites in the normal human spinal cord. Brain Res 1991; 539: 164–8

    Article  PubMed  CAS  Google Scholar 

  61. Carlton SM, Chung K, Ding Z, et al. Glutamate receptors on postganglionic sympathetic axons. Neurosci 1998; 83: 601–5

    Article  CAS  Google Scholar 

  62. Catania MV, De Socarraz H, Penney JB, et al. Metabotropic glutamate receptor heterogeneity in rat brain. Mol Pharmacol 1994; 45: 626–36

    PubMed  CAS  Google Scholar 

  63. Carlton SM, Hargett GL, Coggeshall RE. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci Lett 1995; 197: 25–8

    Article  PubMed  CAS  Google Scholar 

  64. Masu M, Nakajima Y, Moriyoshi K, et al. Molecular characterization of NMDA and metabotropic glutamate receptors. Ann NY Acad Sci 1994; 707: 153–64

    Article  Google Scholar 

  65. Koerner JF, Cotman CW. Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res 1981; 216: 192–8

    Article  PubMed  CAS  Google Scholar 

  66. Evans RH, Francis AA, Jones AW, et al. The effects of a series of-phosphonic —carboxylic amino acids on electrically evoked and amino acid induced responses in isolated spinal cord preparations. Br J Pharmacol 1982; 75: 65–75

    Article  PubMed  CAS  Google Scholar 

  67. Davies J, Watkins JC. Actions of D- and L-forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res 1982; 235: 378–86

    Article  PubMed  CAS  Google Scholar 

  68. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology and distinct properties in the function of the central nervous system. Ann Rev Pharmacol Toxicol 1989; 29: 365–402

    Article  CAS  Google Scholar 

  69. Furuyama T, Kiyama H, Sato K, et al. Region-specific expression of subunits of ionotropic glutamate receptors (AMPA-type, KA-type and NMDA receptors) in the rat spinal cord with special reference to nociception. Mol Brain Res 1993; 18: 141–51

    Article  PubMed  CAS  Google Scholar 

  70. Watanabe M, Mishina M, Inoue Y. Distinct spatiotemporal distributions of the N-methyl-D-aspartate receptor channel subunit mRNAs in the mouse cervical cord. J Comp Neurol 1994; 345: 314–9

    Article  PubMed  CAS  Google Scholar 

  71. Tölle TR, Berthele A, Zieglgänsberger W, et al. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J Neurosci 1993; 13: 5009–28

    PubMed  Google Scholar 

  72. Nagy I, Woolf CJ, Dray A, et al. Cobalt accumulation in neurons expressing ionotropic excitatory amino acid receptors in young rat spinal cord: morphology and distribution. J Comp Neurol 1994; 344: 321–35

    Article  PubMed  CAS  Google Scholar 

  73. Tachibana M, Wenthold RJ, Morioka H, et al. Light and electron microscopic immunocytochemical localization of AMPA-selective glutamate receptors in the rat spinal cord. J Comp Neurol 1994; 344: 431–54

    Article  PubMed  CAS  Google Scholar 

  74. Garcia-Ladona FJ, Palacios JM, Probst A, et al. Excitatory amino acid AMPA receptor mRNA localization in several regions of normal and neurological disease affected human brain. An in situ hybridization histochemistry study. Brain Res Mol Brain Res 1994; 21: 75–84

    CAS  Google Scholar 

  75. Henley JM, Jenkins R, Hunt SP. Localization of glutamate receptor binding sites and mRNAs to the dorsal horn of the rat spinal cord. Neuropharmacology 1993; 32: 37–41

    Article  PubMed  CAS  Google Scholar 

  76. Blackstone CD, Moss SJ, Martin LJ, et al. Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J Neurochem 1992; 58: 1118–26

    Article  PubMed  CAS  Google Scholar 

  77. Allaoua H, Chaudieu I, Krieger C, et al. Alterations in spinal cord excitatory amino acid receptors in amyotrophic lateral sclerosis patients. Brain Res 1992; 579: 169–72

    Article  PubMed  CAS  Google Scholar 

  78. Mitchell JJ, Anderson KJ. Quantitative autoradiographic analysis of excitatory amino acid receptors in the cat spinal cord. Neurosci Lett 1991; 124: 269–72

    Article  PubMed  CAS  Google Scholar 

  79. Wenzel A, Scheurer L, Kunzi R, et al. Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport 1995; 7: 45–8

    PubMed  CAS  Google Scholar 

  80. Farb CR, Aoki C, Ledoux JE. Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study. J Comp Neurol 1995; 362: 86–108

    Article  PubMed  CAS  Google Scholar 

  81. Kus L, Saxon D, Beitz AJ. NMDAR1 mRNA distribution in motor and thalamic-projecting sensory neurons in the rat spinal cord and brain stem. Neurosci Lett 1995; 196: 201–4

    Article  PubMed  CAS  Google Scholar 

  82. Liu H, Wang H, Sheng M, et al. Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn. Proc Natl Acad Sci 1994; 91: 8383–7

    Article  PubMed  CAS  Google Scholar 

  83. Shaw PJ, Ince PG. A quantitative autoradiographic study of [3H]kainate binding sites in the normal human spinal cord, brainstem and motor cortex. Brain Res 1994; 641: 39–45

    Article  PubMed  CAS  Google Scholar 

  84. Huntley GW, Bickers JC, Jansson W, et al. Distribution and synaptic localization of immunocytochemically identified NMDA receptor subunit proteins in sensory-motor and visual cortices of monkey and human. J Neurosci 1994; 14: 3603–19

    PubMed  CAS  Google Scholar 

  85. Watanabe M, Mishina M, Inoue Y. Distinct gene expression of the N-methyl-D-aspartate receptor channel subunit in peripheral neurons of the mouse sensory ganglia and adrenal gland. Neurosci Lett 1994; 165: 183–6

    Article  PubMed  CAS  Google Scholar 

  86. Petralia RS, Yokotani N, Wenthold RJ. Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J Neurosci 1994; 14: 667–96

    PubMed  CAS  Google Scholar 

  87. Tallaksen-Breene SJ, Young AB, Penney JB, et al. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci Lett 1992; 141: 79–83

    Article  Google Scholar 

  88. Young AB, Dauth GW, Hollingsworth Z, et al. Quisqualate and NMDA-sensitive [3H]glutamate binding in primate brain. J Neurosci Res 1990; 27: 512–21

    Article  PubMed  CAS  Google Scholar 

  89. Albin RL, Makowiec RL, Hollingsworth Z, et al. Excitatory amino acid binding sites in the periaqueductal gray of the rat. Neurosci Lett 1990; 118: 112–15

    Article  PubMed  CAS  Google Scholar 

  90. Bowery NG, Wong EH, Hudson AL. Quantitative autoradiography of [3H]-MK-801 binding sites in mammalian brain. Br J Pharmacol 1988; 93: 944–54

    Article  PubMed  CAS  Google Scholar 

  91. Greenamyre JT, Olson JM, Penney Jr JB, et al. Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate-and kainate-sensitive glutamate binding sites. J Pharmacol Exp Ther 1985; 233: 254–63

    PubMed  CAS  Google Scholar 

  92. Olsen RW, Szamraj O, Houser CR. [3H]AMPA binding to glutamate receptor subpopulations in rat brain. Brain Res 1987; 402: 243–54

    Article  PubMed  CAS  Google Scholar 

  93. Boxall SJ, Berthele A, Laurie DJ, et al. Enhanced expression of metabotropic glutamate receptor 3 messenger RNA in the rat spinal cord during ultraviolet irradiation induced peripheral inflammation. Neurosci 1998; 82: 591–602

    Article  CAS  Google Scholar 

  94. Vidnáyansky Z, Hamori J, Negyessy L, et al. Cellular and subcellular localization of the mGluR5a metabotropic glutamate receptor in rat spinal cord. Neuroreport 1994; 6: 209–13

    Article  Google Scholar 

  95. Li H, Ohishi H, Kinoshita A, et al. Localization of a metabotropic glutamate receptor, mGluR7, in axon terminals of presumed nociceptive, primary afferent fibers in the superficial layers of the spinal dorsal horn: an electron microscope study in the rat. Neurosci Lett 1997; 223: 153–6

    Article  PubMed  CAS  Google Scholar 

  96. Ohishi H, Akazawa C, Shigemoto R, et al. Distribution of mRNAs for L-2-amino-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J Comp Neurol 1995; 360: 555–70

    Article  PubMed  CAS  Google Scholar 

  97. Ohishi H, Nomura S, Ding YQ, et al. Presynaptic localization of a metabotropic glutamate receptor, mGluR7, in the primary afferent neurons: an immunohistochemical study in the rat. Neurosci Lett 1995; 202: 85–8

    Article  PubMed  CAS  Google Scholar 

  98. Ohishi H, Shigemoto R, Nakanishi S, et al. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol 1993; 335: 252–66

    Article  PubMed  CAS  Google Scholar 

  99. Kinzie JM, Saugstad JA, Westbrook GL, et al. Distribution of metabotropic glutamate receptor 7 messenger RNA in the developing and adult rat brain. Neuroscience 1995; 69: 167–76

    Article  PubMed  CAS  Google Scholar 

  100. Ohishi H, Shigemoto R, Nakanishi S, et al. Distribution of the messenger RNA for a metabtropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 1993; 53: 1009–18

    Article  PubMed  CAS  Google Scholar 

  101. Shigemoto R, Nakanishi S, Mizuno N. Distribution of the mRNA for a metabotropic receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 1992; 322: 121–35

    Article  PubMed  CAS  Google Scholar 

  102. Curtis DR, Phillips JW, Watkins JC. Chemical excitation of spinal neurons. Nature 1959; 183: 611–2

    Article  PubMed  CAS  Google Scholar 

  103. Curtis DR, Watkins JC. Acidic amino acids with strong excitatory actions on mammalian neurons. J Physiol (Lond) 1963; 166: 1–14

    CAS  Google Scholar 

  104. Krnjevic K, Phillis JW. Iontophoretic studies of neurones in the mammalian cerebral cortex. J Physiol (Lond) 1963; 165: 274–305

    CAS  Google Scholar 

  105. McLennan H, Huffman RD, Marshall KC. Patterns of excitation of thalamic neurones by amino-acids and by acetylcholine. Nature 1968; 219: 387–8

    Article  PubMed  CAS  Google Scholar 

  106. Nicoletti F, Bruno V, Copani A, et al. Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 1996; 19: 267–71

    Article  PubMed  CAS  Google Scholar 

  107. Hopkin J, Neal MJ. Effect of electrical stimulation and high potassium concentrations on the efflux of 14C-glycine from slices of spinal cord. Br J Pharmacol 1971; 42: 215–23

    Article  PubMed  CAS  Google Scholar 

  108. Ueda H, Miyamae T, Hayashi C, et al. Protein kinase C receptor coupled to Gil-phospholipase C activation in Xenopus oocytes. J Neurosci 1995; 15: 7485–99

    PubMed  CAS  Google Scholar 

  109. Okano K, Ueda M, Kuraishi Y, et al. Effect of repeated cold stress on capsaicin-evoked release of glutamate from rat spinal dorsal horn slices. Neurosci Res 1997; 29: 319–24

    Article  PubMed  CAS  Google Scholar 

  110. Buerkle H, Marsala M, Yaksh TL. Effect of continuous spinal remifentanil infusion on behavior and spinal glutamate release evoked by subcutaneous formalin in the rat. Br J Anaesth 1998; 80: 348–53

    Article  PubMed  CAS  Google Scholar 

  111. Kawamata M, Omote K. Involvement of increased excitatory amino acids and intracellular Ca2+concentration in the spinal dorsal horn in an animal model of neuropathic pain. Pain 1996; 68: 85–96

    Article  PubMed  CAS  Google Scholar 

  112. Klamt JG. Effects of intrathecally administered lamotrigine, a glutamate release inhibitor, on short- and long-term models of hyperalgesia in rats. Anesthesiology 1998; 88: 487–94

    Article  PubMed  CAS  Google Scholar 

  113. Kangra I, Randic M. Outflow of endogenous aspartate and glutamate from the rat spinal dorsal horn in vitro by activation of low- and high-threshold primary afferent fibers. Modulation by μ-opioids. Brain Res 1991; 553: 347–52

    Google Scholar 

  114. Lawand NB, Willis WD, Westlund KN. Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats. Eur J Pharmacol 1997; 324: 169–77

    Article  PubMed  CAS  Google Scholar 

  115. Jensen TS, Yaksh TL. Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sties. Brain Res 1984; 321: 287–97

    Article  PubMed  CAS  Google Scholar 

  116. Satoh M, Oku R, Akaiko A. Analgesia produced by microinjection of L-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents. Brain Res 1983; 261: 361–4

    Article  PubMed  CAS  Google Scholar 

  117. Ault B, Hildebrand LM. L-glutamate activates peripheral nociceptors. Agents Actions 1993; 39(Suppl. C): C142–4

    Article  PubMed  CAS  Google Scholar 

  118. Sher GD, Mitchell D. Intrathecal N-methyl-D-aspartate induces hyperexcitability in rat dorsal horn convergent neurons. Neurosci Lett 1990; 119: 199–202

    Article  PubMed  CAS  Google Scholar 

  119. Aanonsen LM, Lei S, Wilcox GL. Excitatory amino acid receptors and nociceptive neurotransmission in rat spinal cord. Pain 1990; 41: 309–21

    Article  PubMed  CAS  Google Scholar 

  120. Dougherty PM, Willis WD. Enhancement of spinothalamic neuron responses to chemical and mechanical stimuli following combined microiontophoretic application of N-methyl-D-aspartic acid and substance P. Pain 1991; 47: 85–93

    Article  PubMed  CAS  Google Scholar 

  121. Cumberbatch MJ, Herrero JF, Headley PM. Exposure of rat spinal neurones to NMDA, AMPA and kainate produces only short-term enhancements of responses to noxious and non-noxious stimuli. Neurosci Lett 1994; 181: 98–102

    Article  PubMed  CAS  Google Scholar 

  122. Neugebauer V, Lucke T, Schaible HG. Differential effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on the responses of rat spinal neurons with joint input. Neurosci Lett 1993; 155: 29–32

    Article  PubMed  CAS  Google Scholar 

  123. Sher GD, Mitchell D. N-methyl-D-aspartate receptors mediate responses of rat dorsal horn neurones to hindlimb ischemia. Brain Res 1990; 522: 55–62

    Article  PubMed  CAS  Google Scholar 

  124. Ault B, Hildebrand LM. Effects of excitatory amino acid receptor antagonists on a capsaicin-evoked nociceptive reflex: a comparison with morphine, clonidine and baclofen. Pain 1993; 52: 341–9

    Article  PubMed  CAS  Google Scholar 

  125. Thompson SW, Dray A, Urban L. Injury-induced plasticity of spinal reflex activity: NK1 neurokinin receptor activation and enhanced A- and C-fiber mediated responses in the rat spinal cord in vitro. J Neurosci 1994; 14: 3672–87

    PubMed  CAS  Google Scholar 

  126. Nagy I, Maggi CA, Dray A, et al. The role of neurokinin and N-methyl-D-aspartate receptors in synaptic transmission from capsaicin-sensitive primary afferents in the rat spinal cord in vitro. Neuroscience 1993; 52: 1029–37

    Article  PubMed  CAS  Google Scholar 

  127. Urban L, Dray A. Synaptic activation of dorsal horn neurons by selective C fibre excitation with capsaicin in the mouse spinal cord in vitro. Neuroscience 1992; 47: 693–702

    Article  PubMed  CAS  Google Scholar 

  128. Dickenson AH, Aydar E. Antagonism at the glycine site on the NMDA receptor reduces spinal nociception in the rat. Neurosci Lett 1991; 121: 263–6

    Article  PubMed  CAS  Google Scholar 

  129. Dickenson AH, Chapman V, Green GM. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Gen Pharmacol 1997; 28: 633–8

    Article  PubMed  CAS  Google Scholar 

  130. Xu XJ, Zhang X, Hökfelt T, et al. Plasticity in spinal nociception after peripheral nerve section: reduced effectiveness of the NMDA receptor antagonist MK-801 in blocking wind-up and central sensitization of the flexor reflex. Brain Res 1995; 670: 342–6

    Article  PubMed  CAS  Google Scholar 

  131. Haley JE, Sullivan AF, Dickenson AH. Evidence for spinal N-methyl-D-aspartate involvement in prolonged chemical nociception in the rat. Brain Res 1990; 518: 218–26

    Article  PubMed  CAS  Google Scholar 

  132. Schaible H-G, Grubb BD, Neugebauer V, et al. The effects of NMDA antagonists on neuronal activity in cat spinal cord evoked by acute inflammation in the knee joint. Eur J Neurosci 1991; 3: 981–91

    Article  PubMed  Google Scholar 

  133. Dougherty PM, Palecek J, Paleckova V, et al. The role of NMDA and non-NMDA excitatory amino acid receptors in the excitation of primate spinothalamic tract neurons by mechanical, thermal and electrical stimuli. J Neurosci 1992; 12: 3025–41

    PubMed  CAS  Google Scholar 

  134. Dougherty PM, Sluka KA, Sorkin LS, et al. Neural changes in acute arthritis in monkeys. I. Parallel enhancement of responses of spinothalamic tract neurons to mechanical stimulation and excitatory amino acids. Brain Res Brain Res Rev 1992; 17: 1–13

    CAS  Google Scholar 

  135. Neugebauer V, Kornhuber J, Lucke T, et al. The clinically available NMDA receptor antagonist memantine is antinociceptive on rat spinal neurones. Neuroreport 1993; 4: 1259–62

    Article  PubMed  CAS  Google Scholar 

  136. Neugebauer V, Lucke T, Grubb B, et al. The involvement of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the responsiveness of rat spinal neurons with input from the chronically inflamed ankle. Neurosci Lett 1994; 170: 237–40

    Article  PubMed  CAS  Google Scholar 

  137. Chapman V, Dickenson AH. Time related roles of excitatory amino acid receptors during persistent noxiously evoked responses of rat dorsal horn neurons. Brain Res 1995; 703: 45–50

    Article  PubMed  CAS  Google Scholar 

  138. Dougherty PM, Willis WD. Enhanced responses of spinothalamic tract neurons to excitatory amino acids accompany capsaicin-induced sensitization in the monkey. J Neurosci 1992; 12: 883–94

    PubMed  CAS  Google Scholar 

  139. Radhakrishnan V, Henry JL. Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord. Neuroscience 1993; 55: 531–44

    Article  PubMed  CAS  Google Scholar 

  140. Song XJ, Zhao ZQ. Cooperative interaction among the various regulatory sites within the NMDA receptor-channel complex in modulating the evoked response to noxious thermal stimuli of spinal dorsal horn neurons in the cat. Exp Brain Res 1998; 120: 257–62

    Article  PubMed  CAS  Google Scholar 

  141. Eaton SA, Salt TE. Thalamic NMDA receptors and nociceptive sensory synaptic transmission. Neurosci Lett 1990; 110: 297–302

    Article  PubMed  CAS  Google Scholar 

  142. Chiang CY, Park SJ, Kwan CL, et al. NMDA receptor mechanisms contribute to neuroplasticity induced in caudalis nociceptive neurons by tooth pulp stimulation. J Neurophysiol 1998; 80: 2621–31

    PubMed  CAS  Google Scholar 

  143. Carlton SM, Rees H, Gondesen K, et al. Dextrophan attenuates responses of spinothalamic tract cells in normal and nerve-injured monkeys. Neurosci Lett 1997; 229: 169–72

    Article  PubMed  CAS  Google Scholar 

  144. Aanonsen LM, Wilcox GL. Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and σ agonists. J Pharmacol Exp Ther 1987; 243: 9–19

    PubMed  CAS  Google Scholar 

  145. Aanonsen LM, Wilcox GL. Muscimol, γ-aminobutyric acidA receptors and excitatory amino acids in the mouse spinal cord. J Pharmacol Exp Ther 1989; 248: 1034–8

    PubMed  CAS  Google Scholar 

  146. Kolhekar R, Meller ST, Gebhart GF. Characterization of the role of spinal N-methyl-D-aspartate receptors in thermal nociception in the rat. Neuroscience 1993; 57: 385–95

    Article  PubMed  CAS  Google Scholar 

  147. Mjellem-Joly N, Lund A, Berge O-G, et al. Potentiation of a behavioural response in mice by spinal coadministration of substance and excitatory amino acid agonists. Neurosci Lett 1991; 133: 121–4

    Article  PubMed  CAS  Google Scholar 

  148. Okano K, Kuraishi Y, Satoh M. Effects of repeated cold stress on aversive responses produced by intrathecal excitatory amino acids in rats. Biol Pharm Bull 1995; 18: 1602–4

    Article  PubMed  CAS  Google Scholar 

  149. Okano K, Kuraishi Y, Satoh M. Pharmacological evidence for involvement of excitatory amino acids in aversive responses induced by intrathecal substance P in rats. Biol Pharm Bull 1993; 16: 861–5

    Article  PubMed  CAS  Google Scholar 

  150. Raigorodsky G, Urca G. Intrathecal N-methyl-D-aspartate (NMDA) activates both nociceptive and antinociceptive systems. Brain Res 1987; 422: 158–62

    Article  PubMed  CAS  Google Scholar 

  151. Raigorodsky G, Urca G. Spinal antinociceptive effects of excitatory amino acid antagonists: quisqualate modulates the action of N-methyl-D-aspartate. Eur J Pharmacol 1990; 182: 37–47

    Article  PubMed  CAS  Google Scholar 

  152. Sun X, Larson AA. Behavioral sensitization to kainic acid and quisqualic acid in mice: comparison to NMDA and substance P responses. J Neurosci 1991; 11: 3111–23

    PubMed  CAS  Google Scholar 

  153. Advokat C, Ghorpade A, Wolfe E. Intrathecal excitatory amino acid (EAA) agonists increase tail flick latencies (TFLs) of spinal rats. Pharmacol Biochem Behav 1994; 48: 693–8

    Article  PubMed  CAS  Google Scholar 

  154. Kolhekar R, Meller ST, Gebhart GF. N-methyl-D-aspartate receptor-mediated changes in thermal nociception: allosteric modulation at glycine and polyamine recognition sites. Neuroscience 1994; 63: 925–36

    Article  PubMed  CAS  Google Scholar 

  155. Malmberg AB, Yaksh TL. Spinal nitric oxide synthesis inhibition blocks NMDA-induced thermal hyperalgesia and produces antinociception in the formalin test in rats. Pain 1993; 54: 291–300

    Article  PubMed  CAS  Google Scholar 

  156. Meller ST, Dykstra CL, Gebhart GF. Acute thermal hyperalgesia in the rat is produced by activation of N-methyl-D-aspartate receptors and protein kinase C and production of nitric oxide. Neuroscience 1996; 71: 327–35

    Article  PubMed  CAS  Google Scholar 

  157. Ferreira SH, Lorenzetti BB. Glutamate spinal retrograde sensitization of primary sensory neurons associated with nociception. Neuropharmacology 1994; 11: 1479–85

    Article  Google Scholar 

  158. Björkman R, Hallman KM, Hedner J, et al. Acetaminophen blocks spinal hyperalgesia induced by NMDA and substance P. Pain 1994; 57: 259–64

    Article  PubMed  Google Scholar 

  159. Zochodne DW, Murray M, Nag S, et al. A segmental chronic pain syndrome in rats associated with intrathecal infusion of NMDA: evidence for selective action in the dorsal horn. Can J Neurol Sci 1994; 21: 24–8

    PubMed  CAS  Google Scholar 

  160. Zhou S, Bonasera L, Carlton SM. Peripheral administration of NMDA, AMPA or KA results in pain behavior in rats. Neuroreport 1996; 7: 895–900

    Article  PubMed  CAS  Google Scholar 

  161. Jackson DL, Graff CB, Richardson JD, et al. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. Eur J Pharmacol 1995; 284: 321–5

    Article  PubMed  CAS  Google Scholar 

  162. Woolf DJ, Thompson SWN. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation: implications for post-injury pain hyper-sensitivity states. Pain 1991; 44: 293–9

    Article  PubMed  CAS  Google Scholar 

  163. Ma QP, Woolf CJ. Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch-implications for the treatment of mechanical allodynia. Pain 1995; 61: 383–90

    Article  PubMed  CAS  Google Scholar 

  164. Silva E, Cleland CL, Gebhart GF. Contribution of glutamate receptors to the maintenance of mustard oil-induced hyperalgesia in spinalized rats. Exp Brain Res 1997; 117: 379–88

    Article  PubMed  CAS  Google Scholar 

  165. Kolhekar R, Gebhart GF. NMDA and quisqualate modulation of visceral nociception in the rat. Brain Res 1994; 651: 215–26

    Article  PubMed  CAS  Google Scholar 

  166. Rice ASC, McMahon SB. Pre-emptive intrathecal administration of an NMDA receptor antagonist (AP-5) prevents hyper-reflexia in a model of persistent visceral pain. Pain 1994; 335–40

  167. Coutinho SV, Urban MO, Gebhart GF. Role of glutamate receptors and nitric oxide in the rostral ventromedial medulla in visceral hyperalgesia. Pain 1998; 78: 59–69

    Article  PubMed  CAS  Google Scholar 

  168. Ide Y, Maehara Y, Tsukara S, et al. The effects of an intrathecal NMDA antagonist (AP5) on the behavioral changes induced by colorectal inflammation with turpentine in rats. Life Sci 1997; 60: 1359–63

    Article  PubMed  CAS  Google Scholar 

  169. Olivar TO, Laird JMA. Differential effects of N-methyl-D-aspartate receptor blockade on nociceptive somatic and visceral reflexes. Pain 1999; 79: 67–73

    Article  PubMed  CAS  Google Scholar 

  170. Cahusac PMB, Evans RH, Hill RG, et al. The behavioral effects of an N-methylaspartate receptor antagonist following application to the lumbar spinal cord of conscious rats. Neuropharmacology 1984; 23: 719–24

    Article  PubMed  CAS  Google Scholar 

  171. Forman LJ. NMDA receptor antagonism produces antinociception which is partially mediated by brain opioids and dopamine. Life Sci 1999; 64: 1877–87

    Article  PubMed  CAS  Google Scholar 

  172. Lutfy K, Weber E. Attenuation of nociceptive responses by ACEA-1021, a competitive NMDA receptor/glycine site antagonist, in the mice. Brain Res 1996; 743: 17–23

    Article  PubMed  CAS  Google Scholar 

  173. Bernardi M, Bertolini A, Szczawinska K, et al. Blockade of the polyamine site of NMDA receptors produces antinociception and enhances the effect of morphine, in mice. Eur J Pharmacol 1996; 298: 51–5

    Article  PubMed  CAS  Google Scholar 

  174. Coderre TJ, Van Empel I. The utility of excitatory amino acid (EAA) antagonists as analgesic agents I. Comparison of the antinociceptive activity of various classes of EAA antagonists in mechanical, thermal and chemical nociceptive tests. Pain 1994; 59: 345–52

    CAS  Google Scholar 

  175. Laughlin TM, Kitto KF, Wilcox GL. Redox manipulation of NMDA receptors hi vivo: alteration of acute pain and dynorphin-induced allodynia. Pain 1999; 80: 37–43

    Article  PubMed  CAS  Google Scholar 

  176. Jensen TS, Yaksh TL. The antinociceptive activity of excitatory amino acids in the rat brainstem: anatomical and pharmacological analysis. Brain Res 1992; 569: 255–67

    Article  PubMed  CAS  Google Scholar 

  177. Jacquet YF. The NMDA receptor: central role in pain inhibition in rat periaqueductal gray. Eur J Pharmacol 1988; 154: 271–6

    Article  PubMed  CAS  Google Scholar 

  178. Coderre TJ. The role of excitatory amino acid receptors and intracellular messengers in persistent nociception after tissue injury in rats. Mol Neurobiol 1993; 7: 229–46

    Article  PubMed  CAS  Google Scholar 

  179. Coderre TJ, Melzack R. Central neural mediators of secondary hyperalgesia following heat injury in rats: neuropeptides and excitatory amino acids. Neurosci Lett 1991; 131: 71–4

    Article  PubMed  CAS  Google Scholar 

  180. Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 1992; 12: 3665–70

    PubMed  CAS  Google Scholar 

  181. Yamamoto T, Yaksh TL. Comparison of the antinociceptive effects of pre- and post-treatment with intrathecal morphine and MK-801, an NMDA antagonist, on the formalin test in the rat. Anesthesiology 1992; 77: 757–63

    Article  PubMed  CAS  Google Scholar 

  182. Elliot KJ, Brodsky M, Hynansky AD, et al. Dextromethorphan suppresses both formalin-induced nociceptive behavior and the formalin-induced increase in spinal cord c-fos mRNA. Pain 1995; 61: 401–9

    Article  Google Scholar 

  183. Millan MJ, Seguin L. Chemically-diverse ligands at the glycine B site coupled to N-methyl-D-aspartate (NMDA) receptors selectively block the late phase of formalin-induced pain in mice. Neurosci Lett 1994; 178: 139–43

    Article  PubMed  CAS  Google Scholar 

  184. Murray CW, Cowan A, Larson AA. Neurokinin and NMDA antagonists (but not a kainic acid antagonist) are antinociceptive in the mouse formalin model. Pain 1991; 44: 179–85

    Article  PubMed  CAS  Google Scholar 

  185. Eisenberg E, Vos BP, Strassman AM. The NMDA antagonist memantine blocks pain behavior in a rat model of formalin-induced facial pain. Pain 1993; 54: 301–7

    Article  PubMed  CAS  Google Scholar 

  186. Nässtrom J, Karlsson U, Post C. Antinociceptive actions of different classes of excitatory amino acid receptor antagonists in mice. Eur J Pharmacol 1992; 212: 21–9

    Article  PubMed  Google Scholar 

  187. Hunter JC, Singh L. Role of excitatory amino acid receptors in the mediation of nociceptive response to formalin in the rat. Neurosci Lett 1994; 174: 217–21

    Article  PubMed  CAS  Google Scholar 

  188. Kristensen JD, Karlsten R, Gordh T, et al. The NMDA antagonist 3-(20carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) has antinociceptive effect after intrathecal injection in the rat. Pain 1994; 56: 59–67

    Article  PubMed  CAS  Google Scholar 

  189. Davidson EM, Carlton SM. Intraplantar injection of dextrorphan, ketamine or memantine attenuates formalin-induced behaviors. Brain Res 1998; 785: 136–42

    Article  PubMed  CAS  Google Scholar 

  190. Davidson EM, Coggeshall RE, Carlton SM. Peripheral NMDA and non-NMDA receptors contribute to the nociceptive behaviors in the rat formalin test. Neuroreport 1997; 8: 941–6

    Article  PubMed  CAS  Google Scholar 

  191. Vaccarino AL, Marek P, Kest B, et al. NMDA receptor antagonists, MK-801 and ACEA-1011, prevent the development of tonic pain following subcutaneous formalin. Brain Res 1993; 615: 331–4

    Article  PubMed  CAS  Google Scholar 

  192. Shimoyama M, Shimoyama N, Gorman AL, et al. Oral ketamine is antinociceptive in the rat formalin test: role of the metabolite, norketamine. Pain 1999; 81: 85–93

    Article  PubMed  CAS  Google Scholar 

  193. Vaccarino AL, Clemmons HR, Mader Jr GJ, et al. A role of periaqueductal grey NMDA receptors in mediating formalin induced pain in the rat. Neurosci Lett 1997; 236: 117–9

    Article  PubMed  CAS  Google Scholar 

  194. Chaplan SR, Malmberg AB, Yaksh TL. Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J Pharmacol Exp Ther 1997; 280: 829–38

    PubMed  CAS  Google Scholar 

  195. Coderre TJ, Van Empel I. The utility of excitatory amino acid (EAA) antagonists as analgesic agents II. Assessment of the antinociceptive activity of combinations of competitive and non-competitive NMDA antagonists with agents acting at allosteric-glycine and polyamine receptor sites. Pain 1994; 59: 353–9

    CAS  Google Scholar 

  196. Codere TJ. Potent analgesia induced in rats by combined action at PCP and polyamine recognition sites of the NMDA receptor complex. Eur J Neurosci 1993; 5: 390–3

    Article  Google Scholar 

  197. Wiertelak EP, Furness LE, Horan R, et al. Subcutaneous formalin produces centrifugal hyperalgesia at a non-injected site via the NMDA-nitric oxide cascade. Brain Res 1994; 649: 19–26

    Article  PubMed  CAS  Google Scholar 

  198. Ren K, Dubner R. NMDA receptor antagonists attenuate mechanical hyperalgesia in rats with unilateral inflammation of the hindpaw. Neurosci Lett 1993; 163: 22–6

    Article  PubMed  CAS  Google Scholar 

  199. Eisenberg E, LaCross S, Strassman AM. The effects of the clinically tested NMDA receptor antagonist memantine on carrageenan-induced thermal hyperalgesia in rats. Eur J Pharmacol 1994; 255: 123–9

    Article  PubMed  CAS  Google Scholar 

  200. Ren K, Hylden JLK, Williams GM, et al. The effects of a non-competitive NMDA receptor antagonist, MK-801, on behavioral hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain 1992; 50: 331–44

    Article  PubMed  CAS  Google Scholar 

  201. Ma QP, Allchorne AJ, Woolf CJ. Morphine, the NMDA receptor antagonist MK801 and the tachykinin NK1 receptor antagonist RP67580 attenuate the development of inflammation-induced progressive tactile hypersensitivity. Pain 1998; 77: 49–57

    Article  PubMed  CAS  Google Scholar 

  202. Price DD, Mao J, Lu J, et al. Effects of the combined oral administration of NSAIDS and dextromethorphan on behavioral symptoms indicative of arthritic pain in rats. Pain 1996; 68: 119–27

    Article  PubMed  CAS  Google Scholar 

  203. Meller ST, Cummings CP, Traub RJ, et al. The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat. Neuroscience 1994; 60: 367–74

    Article  PubMed  CAS  Google Scholar 

  204. Kolhekar R, Murphy S, Gebhart GF. Thalamic NMDA receptors modulate inflammation-produced hyperalgesia in the rat. Pain 1997; 71: 31–40

    Article  PubMed  CAS  Google Scholar 

  205. Kolhekar R, Gebhart GF. N-methyl-D-aspartate receptor-mediated changes in thermal nociception: allosteric modulation at glycine and polyamine recognition sites. Neuroscience 1994; 63: 925–36

    Article  PubMed  CAS  Google Scholar 

  206. Carlton SM, Coggeshall RE. Inflammation-induced changes in peripheral glutamate receptor populations. Brain Res 1999; 820: 63–70

    Article  PubMed  CAS  Google Scholar 

  207. Renno WM. Prolonged noxious stimulation increases periaqueductal gray NMDA mRNA expression: a hybridization study using two different rat models for nociception. Neurobiology (Bp) 1998; 6: 333–57

    CAS  Google Scholar 

  208. Wang H, Zhang RX, Wang R, et al. Decreased expression of N-methyl-D-aspartate (NMDA) receptors in rat dorsal root ganglion following complete Freund’s adjuvant-induced inflammation: an immunocytochemical study for NMDA NR1 subunit. Neurosci Lett 1999; 265: 195–8

    Article  PubMed  CAS  Google Scholar 

  209. Calcutt NA, Chaplan SR. Spinal pharmacology of tactile allodynia in diabetic rats. Br J Pharmacol 1997; 122: 1478–82

    Article  PubMed  CAS  Google Scholar 

  210. Carlton SM, Hargett GL. Treatment with the NMDA antagonist memantine attenuates nociceptive responses to mechanical stimulation in neuropathic rats. Neurosci Lett 1995; 198: 115–8

    Article  PubMed  CAS  Google Scholar 

  211. Malcangio M, Tomlinson DR. A pharmacological analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. Pain 1998; 76: 151–7

    Article  PubMed  CAS  Google Scholar 

  212. Mao J, Price DD, Hayes RL, et al. Intrathecal treatment with dextrorphan or ketamine potently reduces pain-related behaviors in a rat model of peripheral mononeuropathy. Brain Res 1993: 605: 164–8

    Article  PubMed  CAS  Google Scholar 

  213. Mao J, Price DD, Mayer DJ, et al. Intrathecal MK-801 and local nerve anesthesia synergistically reduce nociceptive behaviors in rats with experimental peripheral mononeuropathy. Brain 1992; 576: 254–62

    Article  CAS  Google Scholar 

  214. Mao J, Price DD, Hayes RL, et al. Differential roles of NMDA and non-NMDA receptor activation in induction and maintenance of thermal hyperalgesia in rats with painful peripheral mononeuropathy. Brain Res 1992; 598: 271–8

    Article  PubMed  CAS  Google Scholar 

  215. Fisher K, Fundytus ME, Cahill CM, et al. Intrathecal administration of the mGluR compound, (S)-4CPG, attenuates hyperalgesia and allodynia associated with sciatic nerve constriction injury in rats. Pain 1998; 77: 59–66

    Article  PubMed  CAS  Google Scholar 

  216. Kim YI, Na HS, Yoon YW, et al. NMDA receptors are important for both mechanical and thermal allodynia from peripheral nerve injury in rats. Neuroreport 1997; 8: 2149–53

    Article  PubMed  CAS  Google Scholar 

  217. Yamamoto T, Yaksh TL. Spinal pharmacology of thermal hyperesthesia induced by constriction injury of the sciatic nerve. Excitatory amino acids. Pain 1992; 49: 121–8

    CAS  Google Scholar 

  218. Tal M, Bennett GJ. Neuropathic pain sensations are differentially sensitive to dextrorphan. Neuroreport 1994; 5: 1438–40

    Article  PubMed  CAS  Google Scholar 

  219. Tal M, Bennett GJ. Dextrorphan relieves neuropathic heat evoked hyperalgesia in the rat. Neurosci Lett 1993; 151: 107–10

    Article  PubMed  CAS  Google Scholar 

  220. Davar G, Hama A, Deykin A, et al. MK-801 blocks the development of thermal hyperalgesia in a rat model of experimental painful neuropathy. Brain Res 1991; 553: 327–30

    Article  PubMed  CAS  Google Scholar 

  221. Boyce S, Wyatt A, Webb JK, et al. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localization of NR2B subunitin dorsal horn. Neuropharmacology 1999; 38: 611–23

    Article  PubMed  CAS  Google Scholar 

  222. Burton AW, Lee DH, Saab C, et al. Preemptive intrathecal ketamine injection produces a long-lasting decrease in neuropathic pain behaviors in a rat model. Reg Anesth Pain Med 1999; 24: 208–13

    PubMed  CAS  Google Scholar 

  223. Munglani R, Hudspith MJ, Fleming B, et al. Effect of pre-emptive NMDA antagonist treatment on long-term Fos expression and hyperalgesia in a model of chronic neuropathic pain. Brain Res 1999; 822: 210–9

    Article  PubMed  CAS  Google Scholar 

  224. Hao JX, Xu XJ. Treatment of a chronic allodynia-like response in spinally injured rats: effects of systemically administered excitatory amino acid receptor antagonists. Pain 1996; 66: 279–85

    Article  PubMed  CAS  Google Scholar 

  225. Qian J, Brown SD, Carlton SM. Systemic ketamine attenuates nociceptive behaviors in a rat model of peripheral neuropathy. Brain Res 1996; 715: 51–62

    Article  PubMed  CAS  Google Scholar 

  226. Wong CS, Cherng CH, Tung CS. Intrathecal administration of excitatory amino acid receptor antagonists or nitric oxide synthase inhibitor reduced autotomy behavior in rats. Anesth Analg 1998; 87: 605–8

    PubMed  CAS  Google Scholar 

  227. Tseng SH. Suppression of autotomy by N-methyl-D-aspartate receptor antagonist (MK-801) in the rat. Neurosci Lett 1998; 240: 17–20

    Article  PubMed  CAS  Google Scholar 

  228. Banos JE, Berslu E, Buti M, et al. Effects of dizocilpine on autotomy behavior after nerve section in mice. Brain Res 1994; 636: 107–10

    Article  PubMed  CAS  Google Scholar 

  229. Seltzer Z, Cohn S, Ginzburg R, et al. Modulation of neuropathic pain behavior in rats by spinal disinhibition and NMDA receptor blockade of injury discharge. Pain 1991; 45: 69–75

    Article  PubMed  CAS  Google Scholar 

  230. Hao JX, Xu XJ, Aldskogius H, et al. the excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spinal cord ischemia in the rat. Exp Neurol 1991; 113: 182–91

    Article  PubMed  CAS  Google Scholar 

  231. Hama AT, Unnerstall JR, Siegan JB, et al. Modulation of NMDA receptor expression in the rat spinal cord by peripheral nerve injury and adrenal medullary grafting. Brain Res 1995; 687: 103–13

    Article  PubMed  CAS  Google Scholar 

  232. Krenz NR, Weaver LC. Effect of spinal cord transection on N-methyl-D-aspartate receptors in the cord. J Neurotrauma 1998; 15: 1027–36

    Article  PubMed  CAS  Google Scholar 

  233. Li P, Wilding TJ, Kim SJ, et al. Kainate-receptor mediated sensory synaptic transmission in mammalian spinal cord. Nature 1999; 397: 161–4

    Article  PubMed  CAS  Google Scholar 

  234. Procter MJ, Houghton AK, Faber ES, et al. Actions of kainate and AMPA selective glutamate receptor ligands on nociceptive processing in the spinal cord. Neuropharmacology 1998; 37: 1287–97

    Article  PubMed  CAS  Google Scholar 

  235. Ault B, Hildebrand LM. Activation of nociceptive reflexes by peripheral kainate receptors. J Pharmacol Exp Ther 1993; 265: 927–32

    PubMed  CAS  Google Scholar 

  236. Brambilla A, Prudentino A, Grippa N, et al. Pharmacological characterization of AMPA-induced biting behaviour in mice. Eur J Pharmacol 1996; 305: 115–7

    Article  PubMed  CAS  Google Scholar 

  237. Yezierski RP, Liu S, Ruenes GL, et al. Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain 1998; 75: 141–55

    Article  PubMed  CAS  Google Scholar 

  238. Meller ST, Dykstra C, Gebhart GF. Acute mechanical hyperalgesia in the rat can be produced by coactivation of spinal ionotropic AMPA and metabotropic glutamate receptors, activation of phospholipase A2 and generation of cyclooxygenase products. Prog Brain Res 1996; 110: 177–92

    Article  PubMed  CAS  Google Scholar 

  239. Meller ST, Dykstra CL, Gebhart GF. Acute mechanical hyperalgesia is produced by coactivation of AMPA and metabotropic glutamate receptors. Neuroreport 1993; 4: 879–82

    Article  PubMed  CAS  Google Scholar 

  240. Lutfy K, Cai SX, Woodward RM, et al. Antinociceptive effects of NMDA and non-NMDA receptor antagonists in the tail flick test in mice. Pain 1997; 70: 31–40

    Article  PubMed  CAS  Google Scholar 

  241. Szekely JI, Kedves R, Mate I, et al. Apparent antinociceptive and anti-inflammatory effects of GYKI 52466. Eur J Pharmacol 1997; 336: 143–54

    Article  PubMed  CAS  Google Scholar 

  242. Nishiyama T, Gyermek L, Lee C, et al. The spinal antinociceptive effects of a novel competitive AMPA receptor antagonist, YM872, on thermal or formalin-induced pain in rats. Anesth Analg 1999; 89: 143–7

    PubMed  CAS  Google Scholar 

  243. Simmons RMA, Li DL, Hoo KH, et al. Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology 1998; 37: 25–36

    Article  PubMed  CAS  Google Scholar 

  244. Zahn PV, Umali E, Brennan TJ. Intrathecal non-NMDA excitatory amino acid receptor antagonists inhibit pain behaviors in a rat model of post operative pain. Pain 1998; 74: 213–23

    Article  PubMed  CAS  Google Scholar 

  245. Pellegrini-Giampietro DE, Fan S, Ault B, et al. Glutamate receptor gene expression in spinal cord of arthritic rats. J Neurosci 1994; 14: 1576–83

    PubMed  CAS  Google Scholar 

  246. Carlton SM, Hargett GL, Coggeshall RE. Plasticity in alpha-amino-3-hydroxy-5-methyl-4-isooxazolepropionic acid receptor subunits in the rat dorsal horn following deafferentation. Neurosci Lett 1998; 242: 21–4

    Article  PubMed  CAS  Google Scholar 

  247. Xu XJ, Hao JX, Seiger A, et al. Systemic excitatory amino acid receptor antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and of the N-methyl-D-aspartate (NMDA) receptor relieve mechanical hypersensitivity after transient spinal cord ischemia in rats. J Pharmacol Exp Ther 1993; 267: 140–4

    PubMed  CAS  Google Scholar 

  248. Advokat C, Rutherford D. Selective antinociceptive effect of excitatory amino acid antagonists in intact and acute spinal rats. Pharmacol Biochem Behav 1995; 51: 855–60

    Article  PubMed  CAS  Google Scholar 

  249. Popratiloff A, Weinberg RJ, Rustioni A. AMPA receptors at primary afferent synapses in substantia gelatinosa after sciatic nerve section. Eur J Neurosci 1998; 10: 3220–30

    Article  PubMed  CAS  Google Scholar 

  250. Harris JA, Corsi M, Quartaroli M, et al. Up regulation of spinal glutamate receptors in chronic pain. Neuroscience 1996; 74: 7–12

    Article  PubMed  CAS  Google Scholar 

  251. Coutinho SV, Meller ST, Gebhart GF. Intracolonic zymosan produces visceral hyperalgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors. Brain Res 1996; 736: 7–15

    Article  PubMed  CAS  Google Scholar 

  252. Charpak S, Gahwiler BH, Do KQ, et al. Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 1990; 347: 765–7

    Article  PubMed  CAS  Google Scholar 

  253. Stratton KR, Worley PF, Baraban JM. Excitation of hippocampal neurons by stimulation of glutamate Qp receptors. Eur J Pharmacol 1989; 173: 235–7

    Article  PubMed  CAS  Google Scholar 

  254. Libri V, Constanti A, Zibetti M, et al. Metabotropic glutamate receptor subtypes mediating slow inward tail current (IADP) induction and inhibition of synaptic transmission in olfactory cortical neurones. Br J Pharmacol 1997; 120: 1083–95

    Article  PubMed  CAS  Google Scholar 

  255. Eaton SA, Jane DE, Jones PL St J, et al. Competitive antagonism at metabotropic glutamate receptors by (S)-4-carboxy-phenylglycine and (RS)-α-methyl-carboxyphenylglycine. Eur J Pharmacol 1993; 244: 195–7

    Article  PubMed  CAS  Google Scholar 

  256. Jane DE, Jones PL St J, Pook PC-K, et al. Stereospecific antagonism by (+)-α-methyl-4-carboxyphenylglycine (MCPG) of (1S,3R)-ACPD-induced effects in neonatal rat motoneurones and rat thalamic neurones. Neuropharmacology 1993; 32: 725–7

    Article  PubMed  CAS  Google Scholar 

  257. Salt TE, Eaton SA. Modulation of sensory neurone excitatory and inhibitory responses in the ventrobasal thalamus by activation of metabotropic excitatory amino acid receptors. Neuropharmacology 1995; 34: 1043–51

    Article  PubMed  CAS  Google Scholar 

  258. Zheng F, Gallagher JP. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons. Neuroreport 1992; 3: 622–4

    Article  PubMed  CAS  Google Scholar 

  259. Zheng F, Gallagher JP, Connor JA. Activation of a metabotropic excitatory amino acid receptor potentiates spike-driven calcium increases in neurons of the dorsolateral septum. J Neurosci 1996; 16: 6079–88

    PubMed  CAS  Google Scholar 

  260. Zheng F, Hasuo H, Gallagher JP. 1S,3R-ACPD-preferring inward current in rat dorsolateral septal neurons is mediated by a novel excitatory amino acid receptor. Neuropharmacology 1995; 34: 905–17

    Article  PubMed  CAS  Google Scholar 

  261. Desai MA, Smith TS, Conn PJ. Multiple metabotropic glutamate receptors regulate hippocampal function. Synapse 1992; 12: 206–13

    Article  PubMed  CAS  Google Scholar 

  262. Glaum SR, Miller RJ. Metabotropic glutamate receptors mediate excitatory transmission in the nucleus of the solitary tract. J Neurosci 1992; 12: 2251–8

    PubMed  CAS  Google Scholar 

  263. Shen K-Z, Johnson SW. A slow excitatory postsynaptic current mediated by G-protein-coupled metabotropic glutamate receptors in rat ventral tegmental dopamine neurons. Eur J Neurosci 1997; 9: 48–54

    Article  PubMed  CAS  Google Scholar 

  264. Glaum SR, Slater NT, Rossi DJ, et al. Role of metabotropic glutamate (ACPD) receptors at the parallel fiber-Purkinje cell synapse. J Neurophysiol 1992; 68: 1453–62

    PubMed  CAS  Google Scholar 

  265. Boxall SJ, Thompson SW, Dray A, et al. Metabotropic glutamate receptor activation contributes to nociceptive reflex activity in the rat spinal cord in vitro. Neuroscience 1996; 74: 13–20

    Article  PubMed  CAS  Google Scholar 

  266. Thompson GA, Jones PL St J, Kilpatrick IC. The actions of a range of excitatory amino acids at (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid-depolarizing receptors on neonatal rat motoneurones. Neuropharmacology 1995; 34: 857–63

    Article  PubMed  CAS  Google Scholar 

  267. Young MR, Fleetwood-Walker SM, Mitchell R, et al. Evidence for a role of metabotropic glutamate receptors in sustained nociceptive inputs to rat dorsal horn neurons. Neuropharmacology 1994; 33: 141–4

    Article  PubMed  CAS  Google Scholar 

  268. Young MR, Fleetwood-Walker SM, Mitchell R, et al. The involvement of metabotropic glutamate receptors and their intracellular signaling pathways in sustained nociceptive transmission in rat dorsal horn neurons. Neuropharmacology 1995; 34: 1033–41

    Article  PubMed  CAS  Google Scholar 

  269. Young MR, Fleetwood-Walker SM, Dickenson T, et al. Behavioural and electrophysiological evidence supporting a role for group I metabotropic glutamate receptors in the mediation of nociceptive inputs to the rat spinal cord. Brain Res 1997; 777: 161–9

    Article  PubMed  CAS  Google Scholar 

  270. Young MR, Blackburn-Munro G, Dickinson T, et al. Antisense ablation of type I metabotropic glutamate receptor mGluR1 inhibits spinal nociceptive transmission. J Neurosci 1998; 18: 10180–8

    PubMed  CAS  Google Scholar 

  271. Spanswick D, Pickering AE, Gibson IC, et al. Excitation of sympathetic preganglionic neurons via metabotropic excitatory amino acid receptors. Neuroscience 1995; 68: 1247–61

    Article  PubMed  CAS  Google Scholar 

  272. Stanfa LC, Dickenson AH. Inflammation alters the effects of mGlu receptor agonists in spinal nociceptive neurones. Eur J Pharmacol 1998; 347: 165–72

    Article  PubMed  CAS  Google Scholar 

  273. Neugebauer V, Lucke T, Schaible HG. Requirement of metabotropic glutamate receptors for the generation of inflammationevoked hyperexcitability in rat spinal cord neurons. Eur J Neurosci 1994; 6: 1179–86

    Article  PubMed  CAS  Google Scholar 

  274. Fisher K, Coderre TJ. Comparison of nociceptive effects produced by intrathecal administration of mGluR agonists. Neuroreport 1996; 7: 2743–7

    Article  PubMed  CAS  Google Scholar 

  275. Fundytus ME, Fisher K, Dray A, et al. In vivo antinociceptive activity of anti-rat mGluR1 and mGluR5 antibodies in rats. Neuroreport 1998; 9: 731–5

    Article  PubMed  CAS  Google Scholar 

  276. Fundytus ME, Yashpal K, Chabot J-G, et al. Knockdown of spinal metabotropic glutamate receptor 1 (mGluR1) alleviates pain and restores opioid efficacy after nerve injury in rats. Br J Pharmacol. In press

  277. Maione S, Marabese I, Leyva J, et al. Characterization of mGluRs which modulate nociception in the PAG of the mouse. Neuropharmacology 1998; 37: 1475–83

    Article  PubMed  CAS  Google Scholar 

  278. Maione S, Oliva P, Marabese I, et al. Periaqueductal gray matter metabotropic glutamate receptors modulate formalin-induced nociception. Pain 2000; 85: 183–9

    Article  PubMed  CAS  Google Scholar 

  279. Fisher K, Coderre TJ. The contribution of mGluRs to formalin-induced nociception. Pain 1996; 68: 255–63

    Article  PubMed  CAS  Google Scholar 

  280. Watkins JC, Collingridge GL. Phenylglycine derivatives as antagonists of metabotropic glutamate receptors. Trends Pharmacol Sci 1994; 15: 333–42

    Article  PubMed  CAS  Google Scholar 

  281. Fundytus ME, Fisher K, Dray A, et al. Antisense oligonucleotides targeting group I mGluRs attenuate nerve constriction-induced hyperalgesia and allodynia. Soc Neurosci Abstracts 1997; 23: 1013

    Google Scholar 

  282. Fundytus ME, Henry JL, Dray A, et al. Antisense knockdown of mGluR1 reverses hyperalgesia and allodynia associated with an established neuropathic injury in rats. Proceedings of the 9th World Congress on Pain. Prog Pain Res Manag 2000; 16: 343–9

    CAS  Google Scholar 

  283. Zahn PK, Brennan TJ. Intrathecal metabotropic glutamate receptor antagonists do not decrease mechanical hyperalgesia in a rat model of post operative pain. Anesth Analg 1998; 87: 1354–9

    PubMed  CAS  Google Scholar 

  284. Casabona G, Catania MV, Storto M, et al. Deafferentation upregulates the expression of the mGlu1a metabotropic glutamate receptor protein in the olfactory bulb. Eur J Neurosci 1998; 10: 771–6

    Article  PubMed  CAS  Google Scholar 

  285. Yashpal K, Pitcher GM, Parent A, et al. Noxious thermal and chemical stimulation induce increases in 3H-phorbol 12,13- dibutyrate binding in spinal cord dorsal horn as well as persistent pain and hyperalgesia, which is reduced by inhibition of protein kinase C. J Neurosci 1995; 15: 3263–72

    PubMed  CAS  Google Scholar 

  286. Coderre TJ, Yashpal K. Intracellular messengers contributing to persistent nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model. Eur J Neurosci 1994; 6: 1328–34

    Article  PubMed  CAS  Google Scholar 

  287. Coderre TJ, Contribution of protein kinase C to central sensitization and persistent pain following tissue injury. Neurosci Lett 1992; 140: 181–4

    Article  PubMed  CAS  Google Scholar 

  288. Nakanishi O, Ishikawa T, Imamura Y. Modulation of formalin-evoked hyperalgesia by intrathecal N-type Ca channel and protein kinase C inhibitor in the rat. Cell Mol Neurobiol 1999; 19: 191–7

    Article  PubMed  CAS  Google Scholar 

  289. Mao J, Price DD, Phillips LL, et al. Increases in protein kinase C gamma immunoreactivity in the spinal cord dorsal horn of rats with painful mononeuropathy. Neurosci Lett 1995; 198: 75–8

    Article  PubMed  CAS  Google Scholar 

  290. Martin WJ, Liu H, Wang H, et al. Inflammation-induced upregulation of protein kinase C gamma immunoreactivity in rat spinal cord correlates with enhanced nociceptive processing. Neuroscience 1999; 88: 1267–74

    Article  PubMed  CAS  Google Scholar 

  291. Fundytus ME. Activity at group I mGluRs: a common mechanism underlying hyperalgesia/allodynia, opioid sensitivity and NMDA sensitivity in neuropathic rats. Can Pain Soc Abstracts 1999. Pain Res Manag 1999: 4: 34

    Google Scholar 

  292. Mayer DJ, Mao J, Price DD. The association of neuropathic pain, morphine tolerance and dependence, and the translocation of protein kinase C. NIDA Res Monogr 1995; 147: 269–98

    PubMed  CAS  Google Scholar 

  293. Mao J, Price DD, Mayer DJ, et al. Pain-related increases in spinal cord membrane-bound protein kinase C following peripheral nerve injury. Brain Res 1992; 588: 144–9

    Article  PubMed  CAS  Google Scholar 

  294. Malmberg AB, Chen CC, Tonegawa S, et al. Preserved acute pain and reduced neuropathic pain in mice lacking PKC gamma. Science 1997; 278: 279–83

    Article  PubMed  CAS  Google Scholar 

  295. Anikstejn L, Otani S, Ben-Ari Y. Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur J Neurosci 1992; 4: 500–5

    Article  Google Scholar 

  296. Bleakman D, Rusin KI, Chard PS, et al. Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol Pharmacol 1992; 42: 192–6

    PubMed  CAS  Google Scholar 

  297. Chen L, Huang L-YM. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 1992; 356: 521–3

    Article  PubMed  CAS  Google Scholar 

  298. Harvey J, Collingridge GL. Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br J Pharmacol 1993; 109: 1085–90

    Article  PubMed  CAS  Google Scholar 

  299. Kelso SR, Nelson TE, Leonard JP. Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. J Physiol 1992; 449: 705–18

    PubMed  CAS  Google Scholar 

  300. Kitamura Y, Miyazaki A, Yamanaka Y, et al. Stimulatory effects of protein kinase C and calmodulin kinase II on N-methyl-D-aspartate receptor/channels in the post-synaptic density of rat brain. J Neurochem 1993; 61: 100–9

    Article  PubMed  CAS  Google Scholar 

  301. Raymond LA, Tingley WG, Blackstone CD, et al. Glutamate receptor modulation by protein kinase phosphorylation. J Physiol Paris 1994; 88: 181–92

    Article  PubMed  CAS  Google Scholar 

  302. Swope SL, Moss SI, Raymond LA, et al. Regulation of ligand-gated ion channels by protein phosphorylation. Adv Second Messenger Phosphoprotein Res 1999; 33: 49–78

    Article  PubMed  CAS  Google Scholar 

  303. Bruno V, Copani A, Knopfel T, et al. Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neuropharmacology 1995; 34: 1089–98

    Article  PubMed  CAS  Google Scholar 

  304. Martin G, Nie Z, Siggins GR. Metabotropic glutamate receptors regulate N-methyl-D-aspartate-mediated synaptic transmission in nucleus accumbens. J Neurophysiol 1997; 78: 3028–38

    PubMed  CAS  Google Scholar 

  305. Martin G, Przewlocki R, Siggins GR. Chronic morphine treatment selectively augments metabotropic glutamate receptor-induced inhibition of N-methyl-D-aspartate receptor-mediated neurotransmission in nucleus accumbens. J Pharmacol Exp Ther 1998; 288: 30–5

    Google Scholar 

  306. Bruno V, Battaglia G, Copani A, et al. Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration. Eur J Neurosci 1995; 7: 1906–13

    Article  PubMed  CAS  Google Scholar 

  307. Fundytus ME, Yashpal K, Dray A, et al. Antisense oligonucleotide knockdown of mGluR1 reverses enhanced NMDA sensitivity in neuropathic rats. Soc Neurosci Abstracts, 1999; 25: 449

    Google Scholar 

  308. Abou-Samira AB, Harwood JP, Catt KJ, et al. Mechanisms of action of CRF and other regulators of ACTH release in pituitary corticotrophs. Ann NY Acad Sci 1987; 512: 67–84

    Article  Google Scholar 

  309. Zieglgansberger W, Tulloch IF. The effects of methionine- and leucine-enkephalin on spinal neurons of the cat. Brain Res 1979; 167: 53–64

    Article  PubMed  CAS  Google Scholar 

  310. Hill RG, Pepper CM. Selective effects of morphine on the no-ciceptive responses of thalamic neurones in the rat. Br J Pharmacol 1978; 64: 137–43

    Article  PubMed  CAS  Google Scholar 

  311. Jhamandas KH, Marsala M, Ibuki T, et al. Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine. J Neurosci 1996; 15: 2758–66

    Google Scholar 

  312. Hong M, Milne B, Jhamandas K. Evidence for the involvement of excitatory amino acid pathways in the development of precipitated withdrawal from acute and chronic morphine: an in vivo voltammetric study in the rat locus coeruleus. Brain Res 1993; 623: 131–41

    Article  PubMed  CAS  Google Scholar 

  313. Kogan JH, Aghajanian GK. Long-term glutamate desensitization in locus coeruleus neurons and its role in opiate withdrawal. Brain Res 1995; 689: 111–21

    Article  PubMed  CAS  Google Scholar 

  314. Aghajanian GK, Kogan JH, Moghaddam B. Opiate withdrawal increases glutamate and aspartate efflux in the locus coeruleus an in vivo microdialysis study. Brain Res 1994; 636: 126–30

    Article  PubMed  CAS  Google Scholar 

  315. Tokuyama S, Wakabayashi H, Ho IK. Direct evidence for a role of glutamate in the expression of the opioid withdrawal syndrome. Eur J Pharmacol 1996; 295: 123–9

    Article  PubMed  CAS  Google Scholar 

  316. Lizasoain I, Leza JC, Cuellar B, et al. Inhibition of morphine withdrawal by lamotrigine: involvement of nitric oxide. Eur J Pharmacol 1996; 299: 41–5

    Article  PubMed  CAS  Google Scholar 

  317. Commons KG, van Bockstaele EJ, Pfaff DW. Frequent colocalization of mu opioid and NMDA-type glutamate receptors at postsynaptic sites in periaqueductal gray neurons. J Comp Neurol 1999; 408: 549–59

    Article  PubMed  CAS  Google Scholar 

  318. Gracy KN, Svingos AL, Pickel VM. Dual ultrastructural localization of mu-opioid receptors and NMDA-type glutamate receptors in the shell of the rat nucleus accumbens. J Neurosci 1997; 17: 4839–48

    PubMed  CAS  Google Scholar 

  319. Angulo JA, Williams A, Ledoux M, et al. Elevation of striatal and accumbal preproenkephalin, preprotachykinin and preprodynorphin mRNA abundance subsequent to N-methyl-D-aspartate receptor blockade with MK-801. Brain Res Mol Brain Res 1995; 29: 15–22

    Article  PubMed  CAS  Google Scholar 

  320. Angulo JA, Watanabe Y, Cadet J, et al. Upregulation of fore-brain proenkephalin mRNA subsequent to NMDA receptor blockade. Eur J Pharmacol 1993; 244: 317–8

    Article  PubMed  CAS  Google Scholar 

  321. Chen L, Gu Y, Huang LY. The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin. J Neurosci 1995; 15: 4602–11

    PubMed  CAS  Google Scholar 

  322. Rusin KI, Randic M. Modulation of NMDA-induced currents by mu-opioid receptor agonist DAGO in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett 1991; 124: 208–12

    Article  PubMed  CAS  Google Scholar 

  323. Hocherman SD, Randic M. Reduction of NMDA-induced Ca2+ transients by a mu-opioid receptor agonist in dorsal horn neurons. Neuroreport 1997; 8: 3061–5

    Article  PubMed  CAS  Google Scholar 

  324. Feng J, Kendig JJ. The NMDA receptor antagonist MK-801 differentially modulates mu and kappa opioid actions in spinal cord in vitro. Pain 1996; 66: 343–9

    Article  PubMed  CAS  Google Scholar 

  325. Oleskevich S, Clements JD, Williams JT. Opioid-glutamate intereactions in rat locus coeruleus neurons. J Neurophysiol 1993; 70: 931–7

    PubMed  CAS  Google Scholar 

  326. Martin G, Nie Z, Siggins GR. Mu-Opioid receptors modulate NMDA receptor-mediated responses in nucleus accumbens neurons. J Neurosci 1997; 17: 11–22

    PubMed  CAS  Google Scholar 

  327. Vaughan CW, Christie MJ. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. J Physiol (Lond) 1997; 498: 463–72

    CAS  Google Scholar 

  328. Zhang KM, Wang XM, Mokha SS. Opioids modulate N-methyl-D-aspartic acid (NMDA)-evoked responses of neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis). Brain Res 1996; 719: 229–33

    Article  PubMed  CAS  Google Scholar 

  329. Cai YC, Ma L, Fan GH, et al. Activation of N-methyl-D-aspartate receptor attenuates acute responsiveness of delta-opioid receptors. Mol Pharmacol 1997; 51: 583–7

    PubMed  CAS  Google Scholar 

  330. Yukhananov RYu, Larson AA. Morphine modulates excitatory amino acid-induced activity in the mouse spinal cord: short-term effects on N-methyl-D-aspartate (NMDA) and long-term effects on kainic acid. Brain Res 1994; 646: 194–200

    Article  PubMed  CAS  Google Scholar 

  331. DeLander GE, Wahl JJ. Morphine (intracerebroventricular) activates spinal systems to inhibit behavior induced by putative pain neurotransmitters. J Pharmacol Exp Ther 1989; 251: 1090–5

    PubMed  CAS  Google Scholar 

  332. Lutfy K, Doan P, Nguyen M, et al. ACEA-1328, an NMDA receptor antagonist, increased the potency of morphine and U50,488H in the tail flick test in mice. Pharmacol Res 1998; 38: 453–60

    Article  PubMed  CAS  Google Scholar 

  333. McCarthy RJ, Kroin JS, Tuman KJ, et al. Antinociceptive potentiation and attenuation of tolerance by intrathecal co-infusion of magnesium sulfate and morphine in rats. Anesth Analg 1998; 86: 830–6

    PubMed  CAS  Google Scholar 

  334. Bhargava HN. Enhancement of morphine actions in morphinenaïve and morphine-tolerant mice by LY235959, a competitive antagonist of the NMDA receptor. Gen Pharmacol 1997; 28: 61–4

    Article  PubMed  CAS  Google Scholar 

  335. Grass S, Hoffman O, Xu XJ, et al. N-methyl-D-aspartate receptor antagonists potentiate morphine’s antinociceptive effect in the rat. Acta Physiol Scand 1996; 158: 269–73

    Article  PubMed  CAS  Google Scholar 

  336. Advokat C, Rhein FQ. Potentiation of morphine-induced anti-nociception in acute spinal rats by the NMDA antagonist dextrorphan. Brain Res 1995; 699: 157–60

    Article  PubMed  CAS  Google Scholar 

  337. Suh HW, Song DK, Choi YS, et al. Multiplicative interaction between intrathecally and intracerebroventricularly administered morphine for antinociception in the mouse: involvement of supraspinal NMDA but not non-NMD A receptors. Life Sci 1995:56:PL181–5

    Article  PubMed  CAS  Google Scholar 

  338. Hoffmann O, Wiesenfeld-Hallin Z. Dextromethorphan potentiates morphine antinociception, but dos not reverse tolerance in rats. Neuroreport 1996; 7: 838–40

    Article  PubMed  CAS  Google Scholar 

  339. Bhargava HN, Matwyshyn GA, Gudehithlu KP. Effects of acute and chronic administration of dizocilpine on the pharmacological responses to U-50,488H and brain and spinal cord kappa-opioid receptors in the rat. Pharmacol 1995; 51: 323–30

    Article  CAS  Google Scholar 

  340. Bespalov A, Kudryashova M, Zvartau E. Prolongation of morphine analgesia by competitive NMDA receptor antagonist D-CPPene (SDZ EAA 494) in rats. Eur J Pharmacol 1998; 351: 299–305

    Article  PubMed  CAS  Google Scholar 

  341. Spinella M, Znamensky V, Moroz M, et al. Actions of NMDA and cholinergic receptor antagonists in the rostral ventromedial medulla upon beta-endorphin analgesia elicited from the ventrolateral periaqueductal gray. Brain Res 1999;829: 151–9

    Article  PubMed  CAS  Google Scholar 

  342. Spinella M, Cooper ML, Bodnar RJ. Excitatory amino acid antagonists in the rostral ventromedial medulla inhibit mesencephalic morphine analgesia in rats. Pain 1996; 64: 545–52

    Article  PubMed  CAS  Google Scholar 

  343. Suh HW, Choi YS, Yoo JS, et al. Non-NMDA receptor antagonist attenuates antinociception induced by morphine but not beta-endorphin, D-Pen2-D-Pen5-enkephalin, and U50,488H administered intracerebroventricularly. Neuropeptides 1995; 28: 125–9

    Article  PubMed  CAS  Google Scholar 

  344. Koyuncuoglu H, Güngör M, Sagduyu H, et al. The antagonistic effects of aspartic acid on some effects of morphine on rats. Eur J Pharmacol 1974; 27: 148–50

    Article  PubMed  CAS  Google Scholar 

  345. Koyuncuoglu H, Güngör M, Sagduyu H, et al. Antagonizing effect of aspartic acid on the development of physical dependence on and tolerance to morphine in the rat. Drug Res 1977; 27: 1676–9

    CAS  Google Scholar 

  346. Koyuncuoglu H, Güngör M, Sagduyu H, et al. Suppression by ketamine and dextromethorphan of precipitated abstinence syndrome in rats. Pharmacol Biochem Behav 1990; 35: 829–32

    Article  PubMed  CAS  Google Scholar 

  347. Trujillo KA, Akil H. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 1991; 251: 85–7

    Article  PubMed  CAS  Google Scholar 

  348. Trujillo KA, Akil H. Inhibition of opiate tolerance by non-competitive N-methyl-D-aspartate receptor antagonists. Brain Res 1994; 633: 178–88

    Article  PubMed  CAS  Google Scholar 

  349. Marek P, Ben-Eliyahu S, Gold M, et al. Excitatory amino acid antagonists (kynurenic acid and MK-801 attenuate the development of morphine tolerance in rats. Brain Res 1991; 547: 77–81

    Article  PubMed  CAS  Google Scholar 

  350. Marek P, Ben-Eliyahu S, Vaccarino AL, et al. Delayed application of MK-801 attenuates development of morphine tolerance in rats. Brain Res 1991; 558: 163–5

    Article  PubMed  CAS  Google Scholar 

  351. Gonzalez P, Cabello P, Germany A, et al. Decrease of tolerance to, and physical dependence on morphine by, glutamate receptor antagonists. Eur J Pharmacol 1997; 332: 257–62

    Article  PubMed  CAS  Google Scholar 

  352. Makimura M, Sugimoto H, Shinomiya K, et al. Inhibitory effect of the NMDA receptor antagonist, dizocilpine (MK-801), on the development of morphine dependence. J Toxicol Sci 1996; 21: 135–41

    Article  PubMed  CAS  Google Scholar 

  353. Herman BH, Vocci F, Bridge P. The effects of NMDA receptor antagonists and nitric oxide synthase inhibitors on opioid tolerance and withdrawal. Medication development issues for opiate addiction. Neuropsychopharmacology 1995; 13: 269–93

    CAS  Google Scholar 

  354. Bhargava HN. Non-competitive antagonism of N-methyl-D-aspartate receptor inhibits tolerance to the analgesic action of U-50,488H, a kappa-opiate receptor agonist in the rat. Gen Pharmacol 1995; 26: 1055–60

    Article  PubMed  CAS  Google Scholar 

  355. Elliott K, Hynansky A, Inturrisi CE. Dextromethorphan attenuates and reverses analgesic tolerance to morphine. Pain 1994; 59: 361–8

    Article  PubMed  CAS  Google Scholar 

  356. Mao J, Price DD, Lu J, et al. Antinociceptive tolerance to the mu-opioid agonist DAMGO is dose-dependently reduced by MK-801 in rats. Neurosci Lett 1998; 250: 193–6

    Article  PubMed  CAS  Google Scholar 

  357. Manning BH, Mao J, Frenk H, et al. Continuous co-administration of dextromethorphan or MK-801 with morphine: attenuation of morphine dependence and naloxone-reversible attenuation of morphine tolerance. Pain 1996; 67: 79–88

    Article  PubMed  CAS  Google Scholar 

  358. Lutfy K, Shen KZ, Woodward RM, et al. Inhibition of morphine tolerance by NMDA receptor antagonists in the formalin test. Brain Res 1996; 731: 171–81

    Article  PubMed  CAS  Google Scholar 

  359. Lutfy K, Shen KZ, Kwon IS, et al. blockade of morphine tolerance by ACEA-1328, a novel NMDA receptor/glycine site antagonist. Eur J Pharmacol 1995; 273: 187–9

    Article  PubMed  CAS  Google Scholar 

  360. Popik P, Skolnick P. The NMDA antagonist memantine blocks the expression and maintenance of morphine dependence. Pharmacol Biochem Behav 1996; 53: 791–7

    Article  PubMed  CAS  Google Scholar 

  361. Zhao GM, Bhargava HN. Effect of antagonism of the NMDA receptor on tolerance to [D-Pen2,D-Pen5]enkephalin, a delta 1-opioid receptor agonist. Peptides 1996; 17: 233–6

    Article  PubMed  CAS  Google Scholar 

  362. Fundytus ME, Coderre TJ. Effect of activity at metabotropic, as well as ionotropic (NMDA), glutamate receptors on morphine dependence. Br J Pharmacol 1994; 113: 1215–20

    Article  PubMed  CAS  Google Scholar 

  363. Allen RM, Dykstra LA. The competitive NMDA receptor antagonist LY235959 modulates the progression of morphine tolerance in rats. Psychopharmacology(Berl) 1999; 142: 209–14

    Article  CAS  Google Scholar 

  364. Kolesnikov Y, Pasternak GW. Topical opioids in mice: analgesia and reversal of tolerance by a topical N-methyl-D-aspartate antagonist. J Pharmacol Exp Ther 1999; 290: 247–52

    PubMed  CAS  Google Scholar 

  365. Wong CS, Cherng CS, Luk HN, et al. Effects of NMDA receptor antagonists on inhibition of morphine tolerance in rats: binding at mu-opioid receptors. Eur J Pharmacol 1996; 297: 27–33

    Article  PubMed  CAS  Google Scholar 

  366. Wang L, Milne B, Jhamandas K. Involvement of excitatory amino acid pathways in the expression of precipitated opioid withdrawal in the rostral ventrolateral medulla: an in vivo voltammetric study. Brain Res 1995; 697: 130–42

    Article  PubMed  CAS  Google Scholar 

  367. Popik P, Mamczarz J, Fraczek M, et al. Inhibition of reinforcing effects of morphine and naloxone precipitated opioid withdrawal by novel glycine site and uncompetitive NMDA receptor antagonists. Neuropharmacology 1998; 37: 1033–42

    Article  PubMed  CAS  Google Scholar 

  368. Kosten TA, DeCaprio JL, Rosen MI. The severity of naloxone precipitated withdrawal is attenuated by felbamate, a possible glycine antagonist. Neuropsychopharmacology 1995; 13: 323–33

    Article  PubMed  CAS  Google Scholar 

  369. Zhu H, Ho IK. NMDA-R1 antisense oligonucleotide attenuates withdrawal signs from morphine. Eur J Pharmacol 1998; 52: 151–6

    Article  Google Scholar 

  370. Bilsky EJ, Inturrisi CE, Sadee W, et al. Competitive and non-competitive NMDA antagonists block the development of anti-nociceptive tolerance to morphine, but not to selective mu or delta opioid agonists in mice. Pain 1996; 68: 229–37

    Article  PubMed  CAS  Google Scholar 

  371. Elliott K, Kest B, Man A, et al. N-methyl-D-aspartate (NMDA) receptors, mu and kappa opioid tolerance, and perspectives on new analgesic drug development. Neuropsychopharmacology 1995; 13: 347–56

    Article  PubMed  CAS  Google Scholar 

  372. Pasternak GW, Kolesnikov YA, Babey AM. Perspectives on the N-methyl-D-aspartate/nitric oxide cascade and opioid tolerance. Neuropsychopharmacology 1995; 13: 309–13

    Article  PubMed  CAS  Google Scholar 

  373. Bhargava HN, Zhao GM. Effects of competitive and noncompetitive antagonists of the N-methyl-D-aspartate receptor on the analgesic action of delta 1- and delta-2-opioid receptor agonists in mice. Br J Pharmacol 1996; 119: 1586–90

    Article  CAS  Google Scholar 

  374. Bhargava HN, Zhao GM. Effects of N-methyl-D-aspartate receptor antagonists on the analgesia and tolerance to D-Ala2, Glu4 deltorphin II, a delta 2-opioid receptor agonist in mice. Brain Res 1996; 719: 56–61

    Article  PubMed  CAS  Google Scholar 

  375. Bell JA, Beglan CL. Co-treatment with MK-801 potentiates naloxone-precipitated morphine withdrawal in the isolated spinal cord of the neonatal rat. Eur J Pharmacol 1995; 294: 297–301

    Article  PubMed  CAS  Google Scholar 

  376. Zhu H, Jang CG, Ma T, et al. Region specific expression of NMDA receptor NR1 subunit mRNA in hypothalamus and pons following chronic morphine treatment. Eur J Pharmacol 1999; 365: 47–54

    Article  PubMed  CAS  Google Scholar 

  377. Bhargava HN, Kumar S. Modification of the binding of [3H]MK-801 to brain regions and spinal cord of rats treated chronically with U-50,488H, a kappa-opioid receptor agonist. Brain Res 1997; 749: 347–50

    Article  PubMed  CAS  Google Scholar 

  378. Gudehithlu KP, Bhargava HN. Differential binding of [3H]MK-801 to brain regions and spinal cord of mice treated chronically with morphine. Gen Pharmacol 1996; 27: 91–4

    Article  PubMed  CAS  Google Scholar 

  379. Bhargava HN, Reddy PL, Gudehithlu KP. Down-regulation of N-methyl-D-aspartate (NMDA) receptors of brain regions and spinal cord of rats treated chronically with morphine. Gen Pharmacol 1995; 26: 131–6

    Article  PubMed  CAS  Google Scholar 

  380. Kolaj M, Randic M. mu-Opioid receptor-mediated reduction of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-activated current in dorsal horn neurons. Neurosci Lett 1996; 204: 133–7

    Article  PubMed  CAS  Google Scholar 

  381. Nishiyama T, Yaksh TL, Weber E. Effects of intrathecal NMDA and non-NMDA antagonists on acute thermal nociception and their interaction with morphine. Anesthesiology 1998; 89: 715–22

    Article  PubMed  CAS  Google Scholar 

  382. Van Praag H, Frenk H. The role of glutamate in opiate descending inhibition of nociceptive spinal reflexes. Brain Res 1990; 524: 101–5

    Article  PubMed  Google Scholar 

  383. Taylor JR, Punch LJ, Elsworth JD. A comparison of the effects of clonidine and CNQX infusion into the locus coeruleus and the amygdala on naloxone-precipitated opiate withdrawal in the rat. Psychopharmacology (Berl) 1998; 138: 133–42

    Article  CAS  Google Scholar 

  384. Rasmussen K, Kendrick WT, Kogan JH, et al. A selective AMPA antagonist, LY293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropsychopharmacology 1996; 15: 497–505

    Article  PubMed  CAS  Google Scholar 

  385. McLemore GL, Kest B, Inturrisi CE. The effects of LY293558, an AMPA receptor antagonist, on acute and chronic morphine dependence. Brain Res 1997; 778: 120–6

    Article  PubMed  CAS  Google Scholar 

  386. Kest B, McLemore G, Kao B, et al. The competitive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist LY293558 attenuates and reverses analgesic tolerance to morphine but not to delta or kappa opioids. J Pharmacol Exp Ther 1997; 283: 1249–55

    PubMed  CAS  Google Scholar 

  387. Fitzgerald LW, Ortiz J, Hamedani AG, et al. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 1996; 16: 274–82

    PubMed  CAS  Google Scholar 

  388. Fundytus ME, Coderre TJ. Opioid tolerance and dependence: a new model highlighting the role of metabotropic glutamate receptors. Pain Forum 1999; 8(1): 3–13

    Article  Google Scholar 

  389. Fundytus ME, Coderre TJ. mGluRs and opioid dependence: a further examination of the mechanisms. Pain Forum 1999; 8(2): 59–63

    Article  Google Scholar 

  390. Fundytus ME, Ritchie J, Coderre TJ. Attenuation of morphine withdrawal symptoms by subtype selective metabotropic glutamate receptor antagonists. Br J Pharmacol 1997; 120: 1015–20

    Article  PubMed  CAS  Google Scholar 

  391. Vandergriff J, Rasmussen K. The selective mGlu2/3 receptor agonist LY354740 attenuates morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropharmacology 1999; 38: 217–22

    Article  PubMed  CAS  Google Scholar 

  392. Fundytus ME, Coderre TJ. Chronic inhibition of intracellular Ca2+ release or PKC activation significantly reduces the development of morphine dependence. Eur J Pharmacol 1996; 300: 173–81

    Article  PubMed  CAS  Google Scholar 

  393. Mao J, Price DD, Mayer DJ. Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C. J Neurosci 1994; 14: 2301–12

    PubMed  CAS  Google Scholar 

  394. Mayer DJ, Mao J, Price DD. The development of morphine tolerance and dependence is associated with translocation of protein kinase C. Pain 1995; 61: 365–74

    Article  PubMed  CAS  Google Scholar 

  395. Maldonado R, Valverde O, Garbay C, et al. Protein kinases in the locus coeruleus and periaqueductal gray matter are involved in the expression of opiate withdrawal. Naunyn-Schmiedeberg’s Arch Pharmacol 1995; 352: 565–75

    CAS  Google Scholar 

  396. Narita M, Feng Y, Makimura M, et al. A protein kinase inhibitor, H-7, inhibits the development of tolerance to opioid antinociception. Eur J Pharmacol 1994; 271: 543–5

    Article  PubMed  CAS  Google Scholar 

  397. Mao J, Price DD, Phillips LL, et al. Increases in protein kinase C gamma immunoreactivity in the spinal cord of rats associated with tolerance to the analgesic effects of morphine. Brain Res 1995; 677: 257–67

    Article  PubMed  CAS  Google Scholar 

  398. Kramer HK, Simon EJ. Role of protein kinase C (PKC) in agonist-induced mu-opioid receptor down-regulation: II. Activation and involvement of the alpha, epsilon and zeta isoforms of PKC. J Neurochem 1999; 72: 594–604

    CAS  Google Scholar 

  399. Fundytus ME, Coderre TJ. Attenuation of precipitated morphine withdrawal symptoms by acute i.c.v. administration of a group II mGluR agonist. Br J Pharmacol 1997; 121: 511–4

    CAS  Google Scholar 

  400. Fundytus ME, Dray A, Henry JL, et al. An antisense oligonucleotide targeting mGluR1 restores opioid sensitivity in neuropathic rats [abstract]. INRC’98 (International Narcotics Research Conference) 1998; 42

  401. Ossipov MH, Lopez Y, Nichols ML, et al. Inhibition by spinal morphine of the tail-flick response is attenuated in rats with nerve ligation injury. Neurosci Lett 1995; 199: 83–6

    Article  PubMed  CAS  Google Scholar 

  402. Ossipov MH, Lopez Y, Nichols ML, et al. The loss of anti-nociceptive efficacy of spinal morphine in rats with nerve ligation injury is prevented by reducing spinal afferent drive. Neurosci Lett 1995; 199: 87–90

    Article  PubMed  CAS  Google Scholar 

  403. Mao J, Price DD, Mayer DJ. Experimental mononeuropathy reduces the antinociceptive effects of morphine: implications for common intracellular mechanisms involved in morphine tolerance and neuropathic pain. Pain 1995; 61: 353–64

    Article  PubMed  CAS  Google Scholar 

  404. Cherney NI, Thaler HT, Friedlander-Klar H, et al. Opioid responsiveness of cancer pain syndromes caused by neuropathic or nociceptive mechanisms: a combined analysis of controlled, single-dose studies. Neurology 1994; 44: 857–61

    Article  Google Scholar 

  405. MacDonald N. Opiate resistant pain: a therapeutic dilemma. Recent Results Cancer Res 1991; 121: 24–35

    Article  PubMed  CAS  Google Scholar 

  406. McQuay HJ, Jadad AR, Carroll D, et al. Opioid sensitivity of chronic pain: a patient-controlled analgesia method. Anesthesia 1992; 47: 757–67

    Article  CAS  Google Scholar 

  407. Christensen D, Idanpaan-Heikkila JJ, Guilbaud G, et al. The antinociceptive effect of combined systemic administration of morphine and the glycine/NMDA receptor antagonist, (+)- HA966 in a rat model of peripheral neuropathy. Br J Pharmacol 1998; 125: 1641–50

    Article  PubMed  CAS  Google Scholar 

  408. Kauppila T, Xu XJ, Yu W, et al. Dextromethorphan potentiates the effect of morphine in rats with peripheral neuropathy. Neuroreport 1998; 9: 1071–4

    Article  PubMed  CAS  Google Scholar 

  409. Nichols ML, Lopez Y, Ossipov MH, et al. Enhancement of the antiallodynic and antinociceptive efficacy of spinal morphine by antisera to dynorphin A(l–13)or MK-801 in a nerve-ligation model of peripheral neuropathy. Pain 1997; 69: 317–22

    Article  PubMed  CAS  Google Scholar 

  410. Yung KK. Localization of glutamate receptors in dorsal horn of rat spinal cord. Neuroreport 1998; 9: 1639–44

    Article  PubMed  CAS  Google Scholar 

  411. Liu XB. Subcellular distribution of AMPA and NMDA receptor subunit immunoreactivity in ventral posterior and reticular nuclei of rat and cat thalamus. J Comp Neurol 1997; 388: 587–602

    Article  PubMed  CAS  Google Scholar 

  412. Lambert DG, Wojcikiewicz RJH, Safrany ST, et al. Muscarinic receptors, phosphoinositide metabolism and intracellular calcium in neuronal cells. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 253–70

    Article  PubMed  CAS  Google Scholar 

  413. Lambert DG. Signal transduction: G proteins and second messengers. Br J Anaesth 1993; 71: 86–95

    Article  PubMed  CAS  Google Scholar 

  414. Rasmussen H. The calcium messenger system (first of two parts). N Engl J Med 1986; 314: 1094–101

    Article  PubMed  CAS  Google Scholar 

  415. Smart D, Lambert DG. The stimulatory effects of opioids and their possible role in the development of tolerance. Trends Pharmacol Sci 1996; 17: 717–9

    Article  Google Scholar 

  416. Childers SR. Opioid receptor-coupled second messenger systems. Life Sci 1991; 48: 1991–2003

    Article  PubMed  CAS  Google Scholar 

  417. Fan GH, Zhao J, Wu YL, et al. N-methyl-D-aspartate attenuates opioid receptor-mediated G protein activation and this process involves protein kinase C. Mol Pharmacol 1998; 53: 684–90

    PubMed  CAS  Google Scholar 

  418. Narita M, Mizoguchi H, Kampine JP, et al. Role of protein kinase C in desensitization of spinal delta-opioid-mediated antinociception in the mouse. BrJ Pharmacol 1996; 118: 1829–35

    Article  CAS  Google Scholar 

  419. Wang L, Medina VM, Rivera M, et al. Relevance of phosphorylation state to opioid responsiveness in opiate naive and tolerant/dependent tissue. Brain Res 1996; 723: 61–9

    Article  PubMed  CAS  Google Scholar 

  420. Ingram SL, Williams JT. Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons. J Physiol (Lond) 1996; 492: 97–106

    CAS  Google Scholar 

  421. Kingston PA, Zufall F, Barnstable CJ. Rat hippocampal neurons express genes for both rod retinal and olfactory cyclic nucleotide-gated channels: novel targets for cAMP/cGMP function. Proc Natl Acad Sci USA 1996; 93: 10440–5

    Article  PubMed  CAS  Google Scholar 

  422. Pedarzani P, Storm JF. Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP. Proc Natl Acad Sci USA 1995; 92: 11716–20

    Article  PubMed  CAS  Google Scholar 

  423. Wiesenfeld-Hallin Z. Combined opioid-NMDA antagonist therapies: what advantages do they offer for the control of pain syndromes? Drugs 1998; 55: 1–4

    Article  PubMed  CAS  Google Scholar 

  424. Wong C-S, Cherng C-H, Ho S-T. Clinical applications of excitatory amino acid antagonists in pain management. Acta Anaesthesiol Sin 1995; 33: 227–32

    PubMed  CAS  Google Scholar 

  425. Dickenson AH. NMDA receptor antagonists: interactions with opioids. Acta Anaesth Scand 1997; 41: 112–5

    Article  PubMed  CAS  Google Scholar 

  426. Miaskowski C. Innovations in pharmacological therapies. Semin Oncol Nurs 1997; 13: 30–5

    Article  PubMed  CAS  Google Scholar 

  427. Sosnowski M. Pain management: physiopathology, future research and endpoints. Support Care Cancer 1993; 1: 79–88

    Article  PubMed  CAS  Google Scholar 

  428. Gebhardt B. Pharmacology and clinical results with peridural and intrathecal administration of ketamine. Anaesthesiology 1994; 43: S34–40

    CAS  Google Scholar 

  429. Abram SE. Continuous spinal anesthesia for cancer and chronic pain. Reg Anesth 1993; 189: 406–13

    Google Scholar 

  430. Hewitt DJ. The use of NMDA-receptor antagonists in the treatment of chronic pain. Clin J Pain 2000; 16(2 Suppl.); S73–9

    Article  PubMed  CAS  Google Scholar 

  431. Sang CN. NMDA-receptor antagonists in neuropathic pain: experimental methods to clinical trials. J Pain Symptom Manage 2000; 19(1 Suppl.): S21–5

    Article  PubMed  CAS  Google Scholar 

  432. Dickenson AH. A cure for wind up: NMDA receptor antagonists as potential analgesics. Trends Pharmacol Sci 1990; 11: 307–9

    Article  PubMed  CAS  Google Scholar 

  433. Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain 2000; 4: 5–15

    Article  PubMed  CAS  Google Scholar 

  434. Mercadante S. Ketamine in cancer pain: an update. Palliat Med 1996; 10: 225–30

    PubMed  CAS  Google Scholar 

  435. Webb J, Kamali F. Analgesic effects of lamotrigine and phenytoin on cold-induced pain: a crossover placebo-controlled study in healthy volunteers. Pain 1998; 76: 357–63

    Article  PubMed  CAS  Google Scholar 

  436. Eisenberg E, Alon N, Ishay A, et al. Lamotrigine in the treatment of painful diabetic neuropathy. Eur J Neurol 1998; 5: 167–73

    Article  PubMed  Google Scholar 

  437. Arendt-Nielsen L, Petersen-Felix S, Fischer M, et al. The effect of N-methyl-D-aspartate antagonist (ketamine) on single and repeated nociceptive stimuli- a placebo-controlled experimental human study. Anesth Analg 1995; 81: 63–8

    PubMed  CAS  Google Scholar 

  438. Arendt-Nielsen L, Nielsen J, Petersen-Felix S, et al. Effect of racemic mixture and the (+S)-isomer of ketamine on temporal and spatial summation of pain. Br J Anaesth 1996; 77: 625–31

    Article  PubMed  CAS  Google Scholar 

  439. Klepstad P, Maurset A, Moberg ER, et al. Evidence for a role for NMDA receptors in pain perception. Eur J Pharmacol 1990; 187: 513–8

    Article  PubMed  CAS  Google Scholar 

  440. Maurset A, Skoglund LA, Hustveit O, et al. Comparison of ketamine and pethidine in experimental and post-operative pain. Pain 1989: 36: 37–41

    Article  PubMed  CAS  Google Scholar 

  441. Ilkjaer S, Petersen KL, Brennum J, et al. Effect of systemic N-methyl-D-aspartate receptor antagonist (ketamine) on primary and secondary hyperalgesia in humans. Br J Anaesth 1996; 76: 829–34

    Article  PubMed  CAS  Google Scholar 

  442. Ilkjaer S, Dirks J, Brennum J, et al. Effect of systemic N-methyl-D-aspartate receptor antagonist (dextromethorphan) on primary and secondary hyperalgesia in humans. Br J Anaesth 1997; 79: 600–5

    Article  PubMed  CAS  Google Scholar 

  443. Park KM, Max MB, Robinovitz E, et al. Effects of intravenous ketamine, alfentanil, or placebo on pain, pinprick hyperalgesia, and allodynia produced by intradermal capsaicin in human subjects. Pain 1995; 63: 163–72

    Article  PubMed  CAS  Google Scholar 

  444. Andersen OK, Felsby S, Nicolaisen L, et al. The effect of ketamine on stimulation of primary and secondary hyperalgesic areas induced by capsaicin — a double-blind, placebo-controlled, human experimental study. Pain 1996; 66: 51–62

    Article  PubMed  CAS  Google Scholar 

  445. Price DD, Mao J, Frenk H, et al. The N-methyl-D-aspartate receptor antagonist dextromethorphan selectively reduces temporal summation of second pain in man. Pain 1994; 59: 165–74

    Article  PubMed  CAS  Google Scholar 

  446. Mikkelsen S, Ilkjaer S, Brennum J, et al. The effect of naloxone on ketamine-induced effects on hyperalgesia and ketamine-induced side effects in humans. Anesthesiology 1999; 90: 1539–45

    Article  PubMed  CAS  Google Scholar 

  447. Warncke T, Stubhaug A, Jørum E. Ketamine, an NMDA receptor antagonist, suppresses spatial and temporal properties of burn-induced secondary hyperalgesia in man: a double-blind, cross-over comparison with morphine and placebo. Pain 1997; 72: 99–106

    Article  PubMed  CAS  Google Scholar 

  448. Warncke T, Stubhaug A, Jørum E. Preinjury treatment with morphine or ketamine inhibits the development of experimentally induced secondary hyperalgesia in man. Pain 2000; 86: 293–303

    Article  PubMed  CAS  Google Scholar 

  449. Kauppila T, Gronroos M, Pertovaara A. An attempt to attenuate experimental pain in humans by dextromethorphan, an NMDA receptor antagonist. Pharmacol Biochem Behav 1995; 52: 641–4

    Article  PubMed  CAS  Google Scholar 

  450. Schepelmann K, Schugens MM, Loschman PA, et al. The non-competitive N-methyl-D-aspartate-antagonist memantine does not affect segmental mono- and polysynaptic reflexes in man. Neurosci Lett 1998; 257: 159–61

    Article  PubMed  CAS  Google Scholar 

  451. Kinnman E, Nygards EB, Hansson P. Effects of dextromethorphan in clinical doses on capsaicin-induced ongoing pain and mechanical hypersensitivity. J Pain Symptom Manage 1997; 14: 195–201

    Article  PubMed  CAS  Google Scholar 

  452. Rabben T. Effects of the NMDA receptor antagonist ketamine in electrically induced A delta-fiber pain. Methods Find Exp Clin Pharmacol 2000; 22(3): 185–9

    PubMed  CAS  Google Scholar 

  453. Sethna NF, Liu M, Gracely R, et al. Analgesic and cognitive effects of intravenous ketamine-alfentanil combinations versus either drug alone after intradermal capsaicin in normal subjects. Anesth Analg 1998; 86: 1250–6

    PubMed  CAS  Google Scholar 

  454. Eide PK, Stubhaug A. Relief of glossopharyngeal neuralgia by ketamine-induced N-methyl-aspartate receptor blockade. Neurosurgery 1997; 41: 505–8

    Article  PubMed  CAS  Google Scholar 

  455. Nikolajsen L, Hansen PO, Jensen TS. Oral ketamine therapy in the treatment of postamputation stump pain. Acta Anaesthesiol Scand 1997; 41: 427–9

    Article  PubMed  CAS  Google Scholar 

  456. Stannard CF, Porter GE. Ketamine hydrochloride in the treatment of phantom limb pain. Pain 1993; 54: 227–30

    Article  PubMed  CAS  Google Scholar 

  457. Hoffmann V, Coppejans H, Vercauteren M, et al. Successful treatment of postherpetic neuralgia with oral ketamine. Clin J Pain 1994; 10: 240–2

    Article  PubMed  CAS  Google Scholar 

  458. Mercadante S, Lodi F, Sapio M, et al. Long-term ketamine subcutaneous continuous infusion in neuropathic cancer pain. J Pain Symptom Manage 1995; 10: 564–8

    Article  PubMed  CAS  Google Scholar 

  459. Takahashi H, Miyazaki M, Nanbu T, et al. The NMDA-receptor antagonist ketamine abolishes neuropathic pain after epidural administration in a clinical case. Pain 1998; 75: 391–4

    Article  PubMed  CAS  Google Scholar 

  460. Eisenberg E, Pud D. Can patients with chronic neuropathic pain be cured by acute administration of the NMDA receptor antagonist amantadine? Pain 1998; 74: 337–9

    Article  PubMed  CAS  Google Scholar 

  461. Persson J, Axelsson G, Hallin RG, et al. Beneficial effects of ketamine in a chronic pain state with allodynia, possibly due to central sensitization. Pain 1995; 60: 217–22

    Article  PubMed  CAS  Google Scholar 

  462. Rabben T, Skjelbred P, Øye I. Prolonged analgesic effect of ketamine, an N-methyl-D-aspartate receptor inhibitor, in patients with chronic pain. JPET 1999; 289: 1060–6

    CAS  Google Scholar 

  463. Enarson MC, Hays H, Woodroffe MA. Clinical experience with oral ketamine. J Pain Symptom Manage 1999; 17(5): 384–6

    Article  PubMed  CAS  Google Scholar 

  464. Pud D, Eisenberg E, Spitzer A, et al. The NMDA receptor antagonist amantadine reduces surgical neuropathic pain in cancer patients: a double-blind, randomized, placebo controlled trial. Pain 1998; 75: 349–54

    Article  PubMed  CAS  Google Scholar 

  465. Eide PK, Stubhaug A, Stenehjem AE. Central dysesthesia pain after traumatic spinal cord injury is dependent on N-methyl-D-aspartate receptor activation. Neurosurgery 1995;37: 1080–7

    Article  PubMed  CAS  Google Scholar 

  466. Eide PK, Jørum E, Stubhaug A, et al. Relief of post-herpetic neuralgia with the N-methyl-D-aspartic acid receptor antagonist ketamine: a double-blind, cross-over comparison with morphine and placebo. Pain 1994; 58: 347–54

    Article  PubMed  CAS  Google Scholar 

  467. Nikolajsen L, Hansen CL, Nielsen J, et al. The effect of ketamine on phantom pain: a central neuropathic disorder maintained by peripheral input. Pain 1996; 67: 69–77

    Article  PubMed  CAS  Google Scholar 

  468. Graven-Nielsen T, Aspegren Kendall S, Henriksson KG, et al. Ketamine reduces muscle pain, temporal summation, and referred pain in fibromyalgia patients. Pain 2000; 85: 483–91

    Article  PubMed  CAS  Google Scholar 

  469. Sorensen J, Bengtsson A, Backman E, et al. Pain analysis in patients with fibromyalgia. Effects of intravenous morphine, lidocaine, and ketamine. Scand J Rheumatol 1995; 24: 360–5

    CAS  Google Scholar 

  470. Backonja M, Arndt G, Gombar KA, et al. Response of chronic neuropathic pain syndromes to ketamine: a preliminary report. Pain 1994; 56: 51–7

    Article  PubMed  CAS  Google Scholar 

  471. Felsby S, Nielsen J, Arendt-Nielsen L, et al. NMDA receptor blockade in chronic neuropathic pain: a comparison of ketamine and magnesium chloride. Pain 1995; 64: 283–91

    Article  Google Scholar 

  472. Medrik-Goldberg T, Lifschitz D, Pud D, et al. Intravenous lidocaine, amantadine, and placebo in the treatment of sciatica: a double-blind, randomized, controlled study. Reg Anesth Pain Med 1999; 24: 534–40

    Article  PubMed  CAS  Google Scholar 

  473. Eisenberg E, Kleiser A, Dortort A, et al. The NMDA (N-methyl-D-aspartate) receptor antagonist memantine in the treatment of postherpetic neuralgia: a double-blind, placebo-controlled study. Eur J Pain 1998; 2: 321–7

    Article  PubMed  CAS  Google Scholar 

  474. Max MB, Byas-Smith MG, Gracely RH, et al. Intravenous infusion of the NMDA antagonist, ketamine, in chronic post-traumatic pain with allodynia: a double-blind comparison to alfentanil and placebo. Clin Neuropharmacol 1995; 18: 360–8

    Article  PubMed  CAS  Google Scholar 

  475. Nicolodi M, Sicuteri F. Negative modulators of excitatory amino acids in episodic and chronic migraine: preventing and reverting chronic migraine. Special lecture 7th INWIN Congress. Int J Clin Pharmacol Res 1998; 18: 93–100

    CAS  Google Scholar 

  476. Nicolodi M, Del Bianco PL, Sicuteri F. Modulation of excitatory amino acids pathway: a possible therapeutic approach to chronic daily headache associated with analgesic drugs abuse. Int J Clin Pharmacol Res 1997; 17: 97–100

    PubMed  CAS  Google Scholar 

  477. Nicolodi M, Sicuteri F. Exploration of NMDA receptors in migraine: therapeutic and theoretic implications. Int J Clin Pharmacol Res 1995; 15: 181–9

    PubMed  CAS  Google Scholar 

  478. Cherry DA, Plummer JL, Gourlay GK, et al. Ketamine as an adjunct to morphine in the treatment of pain. Pain 1995; 62: 119–21

    Article  PubMed  CAS  Google Scholar 

  479. Yang CY, Wong CS, Chang JY, et al. Intrathecal ketamine reduces morphine requirements in patients with terminal cancer pain. Can J Anaesth 1996; 43: 379–83

    Article  PubMed  CAS  Google Scholar 

  480. Fu ES, Miguel R, Scharf JE. Preemptive ketamine decreases postoperative narcotic requirements in patients undergoing abdominal surgery. Anesth Analg 1997; 84: 1086–90

    PubMed  CAS  Google Scholar 

  481. Menigaux C, Fletcher D, Dupont X, et al. The benefits of intraoperative small-dose ketamine on postoperative pain after anterior cruciate ligament repair. Anesth Analg 2000; 90: 129–35

    Article  PubMed  CAS  Google Scholar 

  482. Stubhaug A, Breivik H, Eide PK, et al. Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. Acta Anaesthesiol Scand 1997; 41: 1124–32

    Article  PubMed  CAS  Google Scholar 

  483. Wong CS, Liaw WJ, Tung CS, et al. Ketamine potentiates analgesic effect of morphine in postoperative epidural pain control. Reg Anesth 1996; 21: 534–41

    PubMed  CAS  Google Scholar 

  484. Dahl V, Ernoe PE, Steen T, et al. Does ketamine have preemptive effects in women undergoing abdominal hysterectomy procedures. Anesth Analg 2000; 90: 1419–22

    Article  PubMed  CAS  Google Scholar 

  485. Adam F, Libier M, Oszustowicz T, et al. Preoperative small-dose ketamine has no preemptive analgesic effect in patients undergoing total mastectomy. Anesth Analg 1999; 89: 444–7

    PubMed  CAS  Google Scholar 

  486. Ilkjaer S, Nikolajsen L, Hansen TM, et al. Effect of i.V. ketamine in combination with epidural bupivacaine or epidural morphine on postoperative pain and wound tenderness after renal surgery. Br J Anaesth 1998; 81: 707–12

    PubMed  CAS  Google Scholar 

  487. Adriaenssens G, Vermeyen KM, Hoffmann VL, et al. Postoperative analgesia with i.v. patient-controlled morphine: effect of adding ketamine. Br J Anaesth 1999; 83: 393–6

    CAS  Google Scholar 

  488. Chia YY, Liu K, Liu YC, et al. Adding ketamine in a multi-modal patient-controlled epidural regimen reduces postoperative pain and analgesic consumption. Anesth Analg 1998; 86: 1245–9

    PubMed  CAS  Google Scholar 

  489. Wilder-Smith OH, Arendt-Nielsen L, Gaumann D, et al. Sensory changes and pain after abdominal hysterectomy: a comparison of anesthetic supplementation with fentanyl versus magnesium or ketamine. Anesth Analg 1998; 86: 95–101

    PubMed  CAS  Google Scholar 

  490. Wilder-Smith CH, Knopfli R, Wilder-Smith OH. Perioperative magnesium infusion and postoperative pain. Acta Anaesthesiol Scand 1997; 41: 1023–7

    Article  PubMed  CAS  Google Scholar 

  491. Tanaka M, Shimizu S, Nishimura W, et al. Relief of neuropathic pain with intravenous magnesium. Masui 1998; 47: 1109–13

    PubMed  CAS  Google Scholar 

  492. Birch PJ. Clinical relevance of receptor pharmacology in the nociceptive pathway. Pain Rev 1995; 2: 13–27

    Google Scholar 

  493. Schugens MM, Egerter R, Daum I, et al. The NMDA antagonist memantine impairs classical eyeblink conditioning in humans. Neurosci Lett 1997; 224: 57–60

    Article  PubMed  CAS  Google Scholar 

  494. Muir KW, Grosset DG, Lees KR. Effects of prolonged infusions of the NMDA antagonist aptiganel hydrochloride (CNS 1102) in normal volunteers. Clin Neuropharmacol 1997; 20: 311–21

    Article  PubMed  CAS  Google Scholar 

  495. Murman DL, Giordani B, Mellow AM, et al. Cognitive, behavioral, and motor effects of the NMDA antagonist ketamine in Huntington’s disease. Neurology 1997; 49: 153–61

    Article  PubMed  CAS  Google Scholar 

  496. Oye I, Paulsen O, Maurset A. Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 1992; 260: 1209–13

    PubMed  CAS  Google Scholar 

  497. Nelson KA, Park KM, Robinovitz E, et al. High-dose oral dextromethorphan versus placebo in painful diabetic neuropathy and postherpetic neuralgia. Neurology 1997; 48: 1212–8

    Article  PubMed  CAS  Google Scholar 

  498. McQuay HJ, Carroll D, Jadad AR, et al. Dextromethorphan for the treatment of neuropathic pain: a double-blind randomised controlled crossover trial with integral n-of-1 design. Pain 1994; 59: 127–33

    Article  PubMed  CAS  Google Scholar 

  499. Mercadante S, Casuccio A, Genovese G. Ineffectiveness of dextromethorphan in cancer pain. J Pain Symptom Manage 1998; 16: 317–22

    Article  PubMed  CAS  Google Scholar 

  500. Kristensen JD, Svensson B, Gordh Jr T. The NMDA-receptor antagonist CPP abolishes neurogenic ‘wind-up pain’ after intrathecal administration. Pain 1992; 51: 249–53

    Article  PubMed  CAS  Google Scholar 

  501. Wu C-T, Yu J-C, Yeh C-C, et al. Preincisional dextromethorphan treatment decreases postoperative pain and opioid requirement after laparoscopic cholecystectomy. Anesth Analg 1999; 88: 1331–4

    PubMed  CAS  Google Scholar 

  502. Kawamata T, Omote K, Kawamata M, et al. Premedication with oral dextromethorphan reduces postoperative pain after tonsillectomy. Anesth Analg 1998; 86: 594–7

    PubMed  CAS  Google Scholar 

  503. Wu CT, Yu JC, Liu ST, et al. Preincisional dextromethorphan treatment for postoperative pain management after upper abdominal surgery. World J Surg 2000; 24: 512–7

    Article  PubMed  CAS  Google Scholar 

  504. Grace RF, Power I, Umedaly H, et al. Preoperative dextromethorphan reduces intraoperative but not postoperative morphine requirements after laparotomy. Anesth Analg 1998; 87: 1135–8

    PubMed  CAS  Google Scholar 

  505. Ilkjaer S, Bach LF, Nielsen PA, et al. Effect of preoperative oral dextromethorphan on immediate and late postoperative pain and hyperalgesia after total abdominal hysterectomy. Pain 2000; 86: 19–24

    Article  PubMed  CAS  Google Scholar 

  506. Henderson DJ, Withington BS, Wilson JA, et al. Perioperative dextromethorphan reduces postoperative pain after hysterectomy. Anesth Analg 1999; 89: 399–402

    PubMed  CAS  Google Scholar 

  507. McConaghy PM, McSorley P, McCaughey W, et al. Dextromethorphan and pain after total abdominal hysterectomy. Br J Anaesth 1998; 81: 731–6

    Article  PubMed  CAS  Google Scholar 

  508. Sang CN, Hostetter MP, Gracely RH, et al. AMPA/KA antagonist LY293558 reduces capsaicin-evoked hyperalgesia but not pain in normal skin in humans. Anesthesiology 1998; 89: 1060-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Marian E. Fundytus is currently funded by the Dr Ronald Melzack Pain Research Award, sponsored by AstraZeneca, the Canadian Pain Society, the Canadian Anaesthetists’ Society, and the Medical Research Council (MRC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian E. Fundytus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fundytus, M.E. Glutamate Receptors and Nociception. Mol Diag Ther 15, 29–58 (2001). https://doi.org/10.2165/00023210-200115010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200115010-00004

Navigation