Skip to main content
Log in

Cardioprotective Mechanisms of ACE Inhibition

The Angiotensin II-Nitric Oxide Balance

  • Published:
Drugs Aims and scope Submit manuscript

Summary

The current challenge facing clinicians is to develop pharmacotherapies that move beyond the treatment of symptoms towards a new agenda in cardiovascular therapeutics that includes interventions to actually prevent the development of end-stage coronary heart disease. The development of new strategies to alter the natural history of cardiovascular disease will be fostered by gaining insights into the fundamental pathobiological mechanisms that promote the morbidity and mortality associated with these disorders. An emerging body of evidence indicates that locally generated vasoactive substances such as angiotensin II and nitric oxide are important determinants of the natural history of vascular disease. It is anticipated that ongoing clinical trials will extend the concept that modulating the activity of vasoactive substances generated by the endothelium has important implications for altering the course of coronary heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. New Engl J Med 1994; 330: 1431–8

    Article  PubMed  CAS  Google Scholar 

  2. Gibbons GH. Mechanisms of vascular remodeling in hypertension: role of autocrine-paracrine vasoactive factors. Curr Opin Nephrol Hypertens 1995; 4: 189–96

    Article  PubMed  CAS  Google Scholar 

  3. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504

    PubMed  CAS  Google Scholar 

  4. Heagerty AM, Aalkjaer C, Bund SJ, et al. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 1993; 21: 391–7

    Article  PubMed  CAS  Google Scholar 

  5. Sivertsson R. The hemodynamic importance of structural vascular changes in essential hypertension. Acta Physiol Scand 1970; 343 Suppl.: 1–56

    CAS  Google Scholar 

  6. Cook TA, Yates PO. A histometric study of cerebral and renal arteries in normotensives and chronic hypertensives. J Pathol 1972; 108: 129–35

    Article  PubMed  CAS  Google Scholar 

  7. Fazekas F, Kleinart R, Offenbacher H, et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. Am J Neuroradiol 1991; 12: 915–21

    PubMed  CAS  Google Scholar 

  8. Ito A, Egashira K, Kadokami T, et al. Chronic inhibition of endothelium-derived nitric oxide synthesis causes coronary microvascular structural changes and hyperreactivity to serotonin in pigs. Circulation 1995; 92(9): 2636–44

    Article  PubMed  CAS  Google Scholar 

  9. Liao Y, Cooper RS, McGee DL, et al. The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA 1995; 273(20): 1592–7

    Article  PubMed  CAS  Google Scholar 

  10. Hampton JA, Bernardo DA, Khan NA, et al. Morphometric evaluation of the renal arterial system of Dahl salt-sensitive and salt-resistant rats on a high salt diet. II. Interlobular arteries and intralobular arterioles. Lab Invest 1989; 60(6): 839–46

    PubMed  CAS  Google Scholar 

  11. Klag MJ, Whelton PK, Randall BL, et al. Blood pressure and end-stage renal disease in men. N Engl J Med 1996; 334(1): 13–8

    Article  PubMed  CAS  Google Scholar 

  12. Boutouyrie P, Laurent S, Girerd X, et al. Common carotid artery stiffness and patterns of left ventricular hypertrophy in hypertensive patients. Hypertension 1995; 25 (4 Pt 1): 651–9

    Article  PubMed  CAS  Google Scholar 

  13. Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation, 1996; 94(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  14. Lim TT, Liang DH, Botas J, et al. Role of compensatory enlargement and shrinkage in transplant coronary artery disease: serial intravascular ultrasound study. Circulation 1997; 95: 855–9

    Article  PubMed  CAS  Google Scholar 

  15. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–5

    Article  PubMed  CAS  Google Scholar 

  16. Hermiller JB, Tenaglia AN, Kisslo KB, et al. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am J Cardiol 1993; 71: 665–8

    Article  PubMed  CAS  Google Scholar 

  17. Chobanian AV, Alexander RW. Exacerbation of atherosclerosis by hypertension. Potential mechanisms and clinical implications. Arch Intern Med 1996; 156(17): 1952–6

    Article  PubMed  CAS  Google Scholar 

  18. Dzau VJ, Re R. Tissue angiotensin system in cardiovascular medicine. A paradigm shift? Circulation 1994; 89: 493–8

    Article  CAS  Google Scholar 

  19. Thybo NK, Korsgaard N, Eriksen S, et al. Dose-dependent effects of perindopril on blood pressure and small artery structure. Hypertension 1994; 23: 659–66

    Article  PubMed  CAS  Google Scholar 

  20. Thybo NK, Stephens N, Cooper A, et al. Effect of antihypertensive treatment on small arteries of patients with previously untreated essential hypertension. Hypertension 1995; 25 (4 Pt 1): 474–81

    Article  PubMed  CAS  Google Scholar 

  21. Itoh H, Mukoyama M, Pratt RE, et al. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest 1993; 91: 2268–74

    Article  PubMed  CAS  Google Scholar 

  22. Sudhir K, Wilson E, Chatterjee K, et al. Mechanical strain and collagen potentiate mitogenic activity of angiotensin II in rat vascular smooth muscle cells. J Clin Invest 1993; 92: 3003–7

    Article  PubMed  CAS  Google Scholar 

  23. Griendling KK, Ushio-Fukai M, Lassegue B, et al. Angiotensin II signaling in vascular smooth muscle: new concepts. Hypertension 1997; 29 (Pt 2): 366–73

    Article  PubMed  CAS  Google Scholar 

  24. Isner JM, Kearney M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91(11): 2703–11

    Article  PubMed  CAS  Google Scholar 

  25. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 1995; 147(2): 251–66

    PubMed  CAS  Google Scholar 

  26. Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995; 95(5): 2266–74

    Article  PubMed  CAS  Google Scholar 

  27. Pollman MJ, Yamada T, Horiuhi M, et al. Vasoactive substances regulate vascular smooth muscle cell apoptosis: countervailing influences of nitric oxide and angiotensin II. Circ Res 1996; 79: 748–56

    Article  PubMed  CAS  Google Scholar 

  28. de Blois D, Tea BS, Dam TV, et al. Smooth muscle apoptosis during vascular regression in spontaneously hypertensive rats. Hypertension 1997; 29: 340–9

    Article  Google Scholar 

  29. Levy BI, Benessiano J, Henrion D, et al. Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 1996; 98(2): 418–25

    Article  PubMed  CAS  Google Scholar 

  30. van Leeuwen RTJ, Kol A, Andreotti F, et al. Angiotensin II increases plasminogen activator inhibitor type 1 and tissuetype plasminogen activator messenger RNA in cultured rat aortic smooth muscle cells. Circulation 1994; 90: 362–8

    Article  PubMed  Google Scholar 

  31. de Blois D, Lambardi DM, Su EJ, et al. Angiotensin II induction of osteopontin expression and DNA replication in rat arteries. Hypertension 1996; 28: 1055–63

    Article  Google Scholar 

  32. Dubey RK, Jackson EK, Luscher TF. Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin 1 receptors. J Clin Invest 1995; 96(1): 141–9

    Article  PubMed  CAS  Google Scholar 

  33. Majesky MW, Daemen MJAP, Schwartz SM. Alpha 1-adrener-gic stimulation of platelet-derived growth factor A-chain gene expression in rat aorta. J Biol Chem 1990; 265: 1082–8

    PubMed  CAS  Google Scholar 

  34. Bevan RD. Trophic effects of peripheral adrenergic nerves on vascular structure. Hypertension 1984; 6 Suppl. III: III-19–III-26

    CAS  Google Scholar 

  35. Li JS, Lariviere R, Schiffrin EL. Effect of a nonselective endothelin antagonist on vascular remodeling in deoxycorticosterone acetate-salt hypertensive rats: evidence for a role of endothelin in vascular hypertrophy. Hypertension 1994; 24: 183–8

    Article  PubMed  CAS  Google Scholar 

  36. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–7

    Article  PubMed  CAS  Google Scholar 

  37. Morishita R, Gibbons GH, Pratt RE, et al. Autocrine and paracrine effects of atrial natriuretic peptide gene transfer on vascular smooth muscle and endothelial cellular growth. J Clin Invest 1994; 94: 824–9

    Article  PubMed  CAS  Google Scholar 

  38. von der Leyen H, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995; 92: 1137–41

    Article  PubMed  Google Scholar 

  39. Rajagopalan S, Meng SXP, Ramasamy S, et al. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: implications for atherosclerotic plaque stability. J Clin Invest 1996; 98: 2572–9

    Article  PubMed  CAS  Google Scholar 

  40. Ohno M, Gibbons GH, Dzau VJ, et al. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 1993; 88(1): 193–7

    Article  PubMed  CAS  Google Scholar 

  41. Tronc F, Wassef M, Esposito B, et al. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 1996; 16(10): 1256–62

    Article  PubMed  CAS  Google Scholar 

  42. Moroi M, Gold HK, Yasuda T, et al. Mice mutant in endothelial nitric oxide synthase: vessel growth and response to injury [abstract]. Circulation 1996; 94: 1–154

    Article  Google Scholar 

  43. Mancini GB, Henry GC, Macaya C, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) study. Circulation 1996; 94(3): 258–65

    Article  PubMed  CAS  Google Scholar 

  44. Iwatsubo H, Nagano M, Sakai T, et al. Converting enzyme inhibitor improves forearm reactive hyperemia in essential hypertension. Hypertension 1997; 29 (Pt 2): 286–90

    Article  PubMed  CAS  Google Scholar 

  45. Panza JA, Garcia CE, Kilcoyne CM, et al. Impaired endothelium-dependent vasodilation in patients with essential hypertension. Evidence that nitric oxide abnormality is not localized to a single signal transduction pathway. Circulation 1995; 91(6): 1732–8

    Article  PubMed  CAS  Google Scholar 

  46. Taddei S, Virdis A, Mattei P, et al. Endothelium-dependent forearm vasodilation is reduced in normotensive subjects with familial history of hypertension. J Cardiovasc Pharmacol 1992; 20 Suppl. 12: S193–5

    Article  PubMed  Google Scholar 

  47. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 1994; 78(6): 931–6

    Article  PubMed  CAS  Google Scholar 

  48. Nakazono K, Watanabe N, Matsuno K, et al. Does Superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 1991; 88(22): 10045–8

    Article  PubMed  CAS  Google Scholar 

  49. Tschudi MR, Mesaros S, Luscher TF, et al. Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Increased decomposition by Superoxide in hypertension. Hypertension 1996; 27(1): 32–5

    Article  PubMed  CAS  Google Scholar 

  50. Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular Superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97(8): 1916–23

    Article  PubMed  CAS  Google Scholar 

  51. Ushio-Fukai M, Zafari AM, Fukui T, et al. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996; 271: 23317–21

    Article  PubMed  CAS  Google Scholar 

  52. Tsai JC, Jain M, Hsieh CM, et al. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells. J Biol Chem 1996; 271(7): 3667–70

    Article  PubMed  CAS  Google Scholar 

  53. Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995; 91(9): 2488–96

    Article  PubMed  CAS  Google Scholar 

  54. Liischer TF, Vanhoutte PM, Raij L. Antihypertensive treatment normalizes decreased endothelium dependent relaxations in rats with salt-induced hypertension. Hypertension 1987; 9 Suppl. III: III-193–III-197

    Google Scholar 

  55. Sun Y, Weber KT. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 1996; 28(5): 851–8

    Article  PubMed  CAS  Google Scholar 

  56. Zisman LS, Abraham WT, Meixell GE, et al. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway. J Clin Invest 1995; 96(3): 1490–8

    Article  PubMed  CAS  Google Scholar 

  57. Hokimoto S, Yasue H, Fujimoto K, et al. Expression of angiotensin-converting enzyme in remaining viable myocytes of human ventricles after myocardial infarction. Circulation 1996; 94(7): 1513–8

    Article  PubMed  CAS  Google Scholar 

  58. Takemoto M, Egashira K, Usui M, et al. Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J Clin Invest 1997; 99(2): 278–87

    Article  PubMed  CAS  Google Scholar 

  59. Diet F, Pratt RE, Berry GJ, et al. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996; 94(11): 2756–67

    Article  PubMed  CAS  Google Scholar 

  60. Kitazono T, Padgett RC, Armstrong ML, et al. Evidence that angiotensin II is present in human monocytes. Circulation 1995; 91(4): 1129–34

    Article  PubMed  CAS  Google Scholar 

  61. Xiong W, Chao J, Chao L. Muscle delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hypertension 1995; 25 (4 Pt 2): 715–9

    Article  PubMed  CAS  Google Scholar 

  62. Alfie ME, Yang X, Hess F, et al. Salt-sensitive hypertension in bradykinin B-2 receptor knockout mice. Biochem Biophys Res Commun 1996; 224: 625–30

    Article  PubMed  CAS  Google Scholar 

  63. Zhang X, Xie YW, Nasjletti A, et al. ACE inhibitors promote nitric oxide accumulation to modulate myocardial oxygen consumption. Circulation 1997; 95(1): 176–82

    Article  PubMed  Google Scholar 

  64. Hornig B, Kohler C, Drexler H. Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation 1997; 95: 1115–8

    Article  PubMed  CAS  Google Scholar 

  65. Harrap SB, Van der Merwe WM, Griffin SA, et al. Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term. Hypertension 1990; 16: 603–14

    Article  PubMed  CAS  Google Scholar 

  66. Dahlof B, Hansson L. The influence of antihypertensive therapy on the structural arteriolar changes in essential hypertension: different effects of enalapril and hydrochlorothiazide. J Intern Med 1993; 234: 271–9

    Article  PubMed  CAS  Google Scholar 

  67. Thybo NK, Stephens N, Cooper A, et al. Effect of antihypertensive treatment on small arteries of patients with previously untreated essential hypertension. Hypertension 1995; 25 (4 Pt 1): 474–81

    Article  PubMed  CAS  Google Scholar 

  68. Skov K, Fenger-Gron J, Mulvany MJ. Effects of an angiotensin-converting enzyme inhibitor, a calcium antagonist, and an endothelin receptor antagonist on renal afferent arteriolar structure. Hypertension 1996; 28(3): 464–71

    Article  PubMed  CAS  Google Scholar 

  69. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993; 329(20): 1456–62

    Article  PubMed  CAS  Google Scholar 

  70. Ravid M, Lang R, Rachmani R, et al. Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med 1996; 156(3): 286–9

    Article  PubMed  CAS  Google Scholar 

  71. Maschio G, Alberti D, Janin G, et al. Effect of the angiotensincon verting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 1996; 334(15): 939–45

    Article  PubMed  CAS  Google Scholar 

  72. GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 1997; 349: 1857–63

    Article  Google Scholar 

  73. Rutherford JD, Pfeffer MA, Moye LA, et al. Effects of captopril on ischemic events after myocardial infarction. Results of the Survival and Ventricular Enlargement trial. SAVE Investigators. Circulation 1994; 90(4): 1731–8

    Article  PubMed  CAS  Google Scholar 

  74. Pepine CJ. Ongoing clinical trials of angiotensin-converting enzyme inhibitors for treatment of coronary artery disease in patients with preserved left ventricular function. J Am Coll Cardiol 1996; 27(5): 1048–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbons, G.H. Cardioprotective Mechanisms of ACE Inhibition. Drugs 54 (Suppl 5), 1–11 (1997). https://doi.org/10.2165/00003495-199700545-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199700545-00003

Keywords

Navigation