Skip to main content
Log in

Mechanism of Clozapine-Induced Agranulocytosis

Current Status of Research and Implications for Drug Development

  • Review Articles
  • Adverse Effects
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Clozapine is an atypical antipsychotic agent that has several advantages over conventional antipsychotics, not least of which is its superior efficacy. However, the high risk of agranulocytosis (0.8% of patients) associated with clozapine therapy has resulted in restricted indications for its use.

The mechanism of clozapine-induced agranulocytosis is not clear. The target cells affected are the myeloid precursors, although the mature neutrophil may also be targeted simultaneously. There is no convincing evidence of direct toxicity of the parent compound or its stable metabolites (demethyl-clozapine and clozapine N-oxide). Clozapine is also metabolised by liver microsomes, peripheral blood neutrophils and their bone marrow precursors to a chemically reactive intermediate that has been postulated to be a nitrenium ion. This toxic metabolite has been shown to covalently bind to neutrophil proteins, suggesting that it may be involved in the pathogenesis of the toxicity. However, it is not clear how toxicity is mediated. The nitrenium ion may bind to essential cellular proteins and disrupt neutrophil function or, alternatively, it may act as a hapten and initiate an immune reaction resulting in immune-mediated destruction of the neutrophil. Indirect evidence exists to support both mechanisms, although clear direct evidence is still lacking. The role of cytokines and apoptosis in the pathogenesis of the agranulocytosis is unclear.

The reason why only approximately 1% of individuals who are treated with clozapine are affected by agranulocytosis has not been elucidated. Evidence exists to implicate both the major histocompatibility complex antigens and heat shock protein variants in determining individual susceptibility, although more patients of different ethnic backgrounds need to be studied.

The ultimate aim of research into clozapine-induced agranulocytosis should be to either prospectively predict which individuals are going to develop agranulocytosis and/or to develop analogues that retain efficacy but are not toxic. The former is complicated by the fact that predisposition may be multifactorial, and thus prediction may require multiple tests that may be of statistical but not absolute validity. The latter depends on identifying the mechanism of toxicity and the chemical characteristics of clozapine that are responsible for the toxicity. This knowledge may allow rational design of new analogues that do not cause agranulocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kane J, Honigfeld G, Singer J, et al. Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch Gen Psychiatry 1988; 45: 789–96

    PubMed  CAS  Google Scholar 

  2. Lieberman JA, Safferman AZ. Clinical profile of clozapine: adverse reactions and agranulocytosis. Psychiatr Q 1992; 63: 51–70

    PubMed  CAS  Google Scholar 

  3. Lindstrom LH. A retrospective study on the long-term efficacy of clozapine in 96 schizophrenic and schizoaffective patients during a 13-year period. Psychopharmacology 1989; 99: S84–6

    PubMed  Google Scholar 

  4. Kane JM. Drug therapy — schizophrenia. N Engl J Med 1996; 334: 34–41

    PubMed  CAS  Google Scholar 

  5. Baldessarini RJ, Frankenburg FR. Clozapine. A novel antipsychotic agent. N Engl J Med 1991; 324: 746–54

    PubMed  CAS  Google Scholar 

  6. Rawlins MD, Thompson JW. Pathogenesis of adverse drug reactions. In: Davies DM, editor. Textbook of adverse drug reactions. Oxford: Oxford University Press, 1977: 44–60

    Google Scholar 

  7. Park BK, Pirmohamed M, Kitteringham NR. Idiosyncratic drug reactions: a mechanistic evaluation of risk factors. Br J Clin Pharmacol 1992; 34: 377–95

    PubMed  CAS  Google Scholar 

  8. Pirmohamed M, Kitteringham NR, Park BK. The role of active metabolites in drug toxicity. Drug Saf 1994; 11: 114–44

    PubMed  CAS  Google Scholar 

  9. Park BK, Pirmohamed M, Kitteringham NR. The role of cytochrome P450 enzymes in hepatic and extrahepatic human drug toxicity. Pharmacol Ther 1995; 68: 385–424

    PubMed  CAS  Google Scholar 

  10. Uetrecht JP. Mechanism of hypersensitivity reactions: proposed involvement of reactive metabolites generated by activated leukocytes. Trends Pharmacol Sci 1989; 10: 463–7

    PubMed  CAS  Google Scholar 

  11. Uetrecht JP. The role of leukocyte-generated reactive metabolites in the pathogenesis of idiosyncratic drug reactions. Drug Metab Rev 1992; 24: 299–366

    PubMed  CAS  Google Scholar 

  12. Mitchell JR, Jollow DJ, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 1973; 187: 185–94

    PubMed  CAS  Google Scholar 

  13. Jollow DJ, Mitchell JR, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 1973; 187: 195–202

    PubMed  CAS  Google Scholar 

  14. Potter WZ, Davis DC, Mitchell JR, et al. Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther 1973; 187: 203–10

    PubMed  CAS  Google Scholar 

  15. Mitchell JR, Jollow DJ, Potter WZ, et al. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 1973; 187: 211–7

    PubMed  CAS  Google Scholar 

  16. Park BK, Coleman JW, Kitteringham NR. Drug disposition and drug hypersensitivity. Biochem Pharmacol 1987; 36: 581–90

    PubMed  CAS  Google Scholar 

  17. Pohl LR, Satoh H, Christ DD, et al. Immunologic and metabolic basis of drug hypersensitivities. Ann Rev Pharmacol 1988; 28: 367–87

    CAS  Google Scholar 

  18. Pessayre D, Larrey D. Acute and chronic drug-induced hepatitis. Baillieres Clin Gastroenterol 1988; 2: 385–423

    PubMed  CAS  Google Scholar 

  19. Uetrecht J. Drug metabolism by leukocytes and its role in drug-induced lupus and other idiosyncratic drug reactions. Crit Rev Toxicol 1990; 20: 213–35

    PubMed  CAS  Google Scholar 

  20. Eastmond DA, Smith MT, Irons RD. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Toxicol Appl Pharmacol 1987; 91: 85–95

    PubMed  CAS  Google Scholar 

  21. Bhat RV, Subrahmanyam VV, Sadler A, et al. Bioactivation of catechol in rat and human bone marrow cells. Toxicol Appl Pharmacol 1988; 94: 297–304

    PubMed  CAS  Google Scholar 

  22. Brodfuehrer JI, Chapman DE, Wilke TJ, et al. Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat and human. Drug Metab Dispos 1990; 18: 20–7

    PubMed  CAS  Google Scholar 

  23. Yunis AA. Chloramphenicol toxicity? 25 years of research. Am J Med 1989; 87: 44–8

    Google Scholar 

  24. Adkinson NF, Wheeler B. Risk factors for IgE dependent reactions to penicillin. In: Kerr JW, Ganderton MA, editors. XI International Congress of Allergology and Clinical Immunology. London: MacMillan Press Ltd, 1983: 55–9

    Google Scholar 

  25. Lafaye P, Lapresie C. Fixation of penicilloyl groups to albumin and appearance of anti-penicilloyl antibodies in penicillintreated patients. J Clin Invest 1988; 82: 7–12

    PubMed  CAS  Google Scholar 

  26. Gut J, Christen U, Huwyler J. Mechanisms of halothane toxicity: novel insights. Pharmacol Ther 1993; 58: 133–55

    PubMed  CAS  Google Scholar 

  27. Pirmohamed M, Kitteringham NR, Park BK. Idiosyncratic reactions to antidepressants: a review of possible mechanisms and predisposing factors. Pharmacol Ther 1992; 53: 105–25

    PubMed  CAS  Google Scholar 

  28. Mendelowitz AJ, Gerson SL, Alvir JMJ, et al. Clozapine-induced agranulocytosis — risk-factors, monitoring and management. CNS Drugs 1995; 4: 412–21

    CAS  Google Scholar 

  29. Alvir JMJ, Lieberman JA. A re-evaluation of the clinical characteristics of clozapine-induced agranulocytosis in light of the United States experience. J Clin Psychopharmacol 1994; 14: 87–9

    PubMed  CAS  Google Scholar 

  30. Alvir JMJ, Lieberman JA, Safferman AZ, et al. Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. N Engl J Med 1993; 329: 162–7

    PubMed  CAS  Google Scholar 

  31. Gerson SL. Clozapine — deciphering the risks. N Engl J Med 1993; 329: 204–5

    PubMed  CAS  Google Scholar 

  32. Atkin K, Kendall F, Gould D, et al. The incidence of neutropenia and agranulocytosis in patients treated with clozapine in the UK and Ireland. Br J Psychiatry 1996; 169: 483–8

    PubMed  CAS  Google Scholar 

  33. Honigfeld G. Effects of the clozapine national registry system on incidence of deaths related to agranulocytosis. Psychiatr Serv 1996; 47: 52–6

    PubMed  CAS  Google Scholar 

  34. Idanpaan-Heikkila J, Alhava E, Olkinuora M, et al. Clozapine and agranulocytosis [letter). Lancet 1975; 2: 611

    PubMed  CAS  Google Scholar 

  35. Lieberman JA, Yunis J, Egea E, et al. HLA-B38, DR4, DQw3 and clozapine-induced agranulocytosis in Jewish patients with schizophrenia. Arch Gen Psychiatry 1990; 47: 945–8

    PubMed  CAS  Google Scholar 

  36. Potter WZ, Ko GN, Zhang LD, et al. Clozapine in China: a review and preview of US/PRC collaboration. Psychopharmacology 1989;99: S87–91

    PubMed  Google Scholar 

  37. Gerson SL, Lieberman JA, Friedenberg WR, et al. Polypharmacy in fatal clozapine-associated agranulocytosis [letter]. Lancet 1991; 338: 262

    PubMed  CAS  Google Scholar 

  38. Junghan U, Albers M, Woggon B. Increased risk of hematological side-effects in psychiatric-patients treated with clozapine and carbamazepine [letter]. Pharmacopsychiatry 1993; 26: 262

    PubMed  CAS  Google Scholar 

  39. Alvir JMJ, Lieberman JA, Safferman AZ. Do white-cell count spikes predict agranulocytosis in clozapine recipients. Psychopharmacol Bull 1995; 31: 311–4

    PubMed  CAS  Google Scholar 

  40. Gerson SL. G-CSF and the management of clozapine-induced agranulocytosis. J Clin Psychiatry 1994; 55: 139–42

    PubMed  Google Scholar 

  41. Lamberti JS, Bellnier TJ, Schwarzkopf SB, et al. Filgrastim treatment of 3 patients with clozapine-induced agranulocytosis. J Clin Psychiatry 1995; 56: 256–9

    PubMed  CAS  Google Scholar 

  42. Gerson SL, Meltzer H. Mechanisms of clozapine-induced agranulocytosis. Drug Saf 1992; 7 Suppl. 1: 17–25

    PubMed  Google Scholar 

  43. Banov MD, Tohen M, Friedberg J. High-risk of eosinophilia in women treated with clozapine. J Clin Psychiatry 1993; 54: 466–9

    PubMed  CAS  Google Scholar 

  44. Galletly C, Wilson D, McEwen S. Eosinophilia associated with decreasing neutrophil count in a clozapine-treated patient. J Clin Psychiatry 1996; 57: 40–1

    PubMed  CAS  Google Scholar 

  45. Nathan DG. Stem cells and haematopoiesis. In: Weatherall DJ, Ledingham JGG, Warrell DA, editors. Oxford textbook of medicine. Oxford: Oxford University Press, 1987: 19. 7–19.

    Google Scholar 

  46. Terui Y, Furukawa Y, Sakoe K, et al. Expression of differentiation-related phenotypes and apoptosis are independently regulated during myeloid cell differentiation. J Biochem 1995; 117: 77–84

    PubMed  CAS  Google Scholar 

  47. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 1989; 339: 27–30

    PubMed  CAS  Google Scholar 

  48. Wagstaff AJ, Bryson HM. Clozapine: a review of its pharmacological properties and therapeutic use in patients with schizophrenia who are unresponsive to or intolerant of classical antipsychotic agents. CNS Drugs 1995; 4: 370–400

    CAS  Google Scholar 

  49. Veys PA, Wilkes S, Shah S, et al. Clinical experience of clozapine-induced neutropenia in the UK. Laboratory investigation using liquid culture systems and immunofluorocytometry. Drug Saf 1992; 7 Suppl. 1: 26–32

    PubMed  Google Scholar 

  50. Gerson SL, Arce C, Meltzer HY. N-desmethylclozapine — a clozapine metabolite that suppresses hematopoiesis. Br J Haematol 1994; 86: 555–61

    PubMed  CAS  Google Scholar 

  51. Labro MT, Babin-Chevaye C. Effects of amodiaquine, chloroquine, and mefloquine on human polymorphonuclear neutrophil function in vitro. Antimicrob Agents Chemother 1988; 32: 1124–30

    PubMed  CAS  Google Scholar 

  52. de Duave C, de Barsy T, Poole B, et al. Lysosomotropic agents. Biochem Pharmacol 1974; 23: 2495–531

    Google Scholar 

  53. Jann MW, Grimsley SR, Gray EC, et al. Pharmacokinetics and pharmacodynamics of clozapine. Clin Pharmacokinet 1993; 24: 161–76

    PubMed  CAS  Google Scholar 

  54. Lin SK, Chang WH, Chung MC, et al. Disposition of clozapine and desmethylclozapine in schizophrenic-patients. J Clin Pharmacol 1994; 34: 318–24

    PubMed  CAS  Google Scholar 

  55. Pirmohamed M, Williams D, Madden S, et al. Metabolism and bioactivation of clozapine by human liver in vitro. J Pharmacol Exp Ther 1995; 272: 984–90

    PubMed  CAS  Google Scholar 

  56. Jerling M, Lindstrom L, Bondesson U, et al. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine — evidence from a therapeutic drug-monitoring service. Ther Drug Monit 1994; 16: 368–74

    PubMed  CAS  Google Scholar 

  57. Fischer V, Vogels B, Maure G, et al. The antipsychotic clozapine is metabolised by the polymorphic human microsomal and recombinant cytochrome P450 2D6. J Pharmacol Exp Ther 1992,260: 1355–60

    PubMed  CAS  Google Scholar 

  58. Dahl M-L, Llerena A, Bondesson U, et al. Disposition of clozapine in man: lack of association with debrisoquine and S-mephenytoin hydroxylation polymorphisms. Br J Clin Pharmacol 1994; 37: 71–4

    PubMed  CAS  Google Scholar 

  59. Hasegawa M, Cola PA, Meltzer HY. Plasma clozapine and desmethylclozapine levels in clozapine-induced agranulocytosis. Neuropsychopharmacology 1994; 11: 45–7

    PubMed  CAS  Google Scholar 

  60. Maggs JL, Williams D, Pirmohamed M, et al. The metabolic formation of reactive intermediates from clozapine: a drug associated with agranulocytosis in man. J Pharmacol Exp Ther 1995; 275: 1463–75

    PubMed  CAS  Google Scholar 

  61. Fischer V, Haar JA, Greiner L, et al. Possible role of free radical formation in clozapine (Clozaril)-induced agranulocytosis. Mol Pharmacol 1991; 40: 846–53

    PubMed  CAS  Google Scholar 

  62. Uetrecht JP. Metabolism of clozapine by neutrophils. Possible implications for clozapine-induced agranulocytosis. Drug Saf 1992; 7 Suppl. 1: 51–6

    PubMed  CAS  Google Scholar 

  63. Liu ZC, Uetrecht JP. Clozapine is oxidized by activated human neutrophils to a reactive nitrenium ion that irreversibly binds to cells. J Pharmacol Exp Ther 1995; 275: 1476–83

    PubMed  CAS  Google Scholar 

  64. Pirmohamed M, Templeton E, Breckenridge AM, et al. In vitro bioactivation of clozapine to a chemically reactive metabolite by human and mouse liver microsomes [abstract]. Br J Clin Pharmacol 1992; 34: 168P

    Google Scholar 

  65. Tschen AC, Rieder MJ, Qyewumi K, et al. In vitro toxicity of clozapine metabolites [abstract]. Clin Pharmacol Ther 1996; 59: PII–2

    Google Scholar 

  66. Safferman AZ, Lieberman JA, Alvir JM, et al. Rechallenge in clozapine-induced agranulocytosis [letter]. Lancet 1992; 339: 1296–7

    PubMed  CAS  Google Scholar 

  67. Pisciotta AV, Konings SA, Ciesemier LL, et al. Cytotoxic activity in serum of patients with clozapine-induced agranulocytosis. J Lab Clin Med 1992; 119: 254–66

    PubMed  CAS  Google Scholar 

  68. Jaunkalns R, Shear NH, Sokoluk B, et al. Antimyeloperoxidase antibodies and adverse reactions to clozapine [letter]. Lancet 1992; 339: 1611–2

    PubMed  CAS  Google Scholar 

  69. Sperner-Unterweger B, Gaggl S, Fleischhacker WW, et al. Effects of clozapine on hematopoiesis and the cytokine system. Biol Psychiatry 1993; 34: 536–43

    PubMed  CAS  Google Scholar 

  70. Brach MA, deVos S, Gruss HJ, et al. Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating-factor is caused by inhibition of programmed cell death. Blood 1992; 80: 2920–5

    PubMed  CAS  Google Scholar 

  71. Batchelor JR, Welsh KI, Tinoco RM, et al. Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility. Lancet 1980; I: 1107–9

    Google Scholar 

  72. Timbrell JA, Facchini V, Harland SJ, et al. Hydralazine-induced lupus: is there a toxic metabolic pathway?. Eur J Clin Pharmacol 1984; 27: 555–9

    PubMed  CAS  Google Scholar 

  73. Uetrecht JP, Zahid N, Whitfield D. Metabolism of vesnarinone by activated neutrophils: implications for vesnarinone-induced agranulocytosis. J Pharmacol Exp Ther 1994; 270: 865–72

    PubMed  CAS  Google Scholar 

  74. Suboticanec K, Folnegovic-Smalc V, Korbar M, et al. Vitamin C status in chronic schizophrenia. Biol Psychiatry 1990; 28: 959–66

    PubMed  CAS  Google Scholar 

  75. Linday LA, Pippenger CE, Howard A, et al. Free-radical scavenging enzyme-activity and related trace-metals in clozapine-induced agranulocytosis — a pilot-study. J Clin Psychopharmacol 1995; 15: 353–60

    PubMed  CAS  Google Scholar 

  76. Yunis JJ, Lieberman J, Yunis EJ. Major histocompatibility complex associations with clozapine-induced agranulocytosis. The USA experience. Drug Saf 1992; 7 Suppl. 1: 7–9

    Google Scholar 

  77. Pfister GM, Hanson DR, Roerig JL, et al. Clozapine-induced agranulocytosis in a Native American: HLA typing and further support for an immune-mediated mechanism. J Clin Psychiatry 1992; 53: 242–4

    PubMed  CAS  Google Scholar 

  78. Joseph G, Nguyen V, Smith JD. HLA-B38 and clozapine-induced agranulocytosis [letter[. Ann Intern Med 1992; 116: 605

    PubMed  CAS  Google Scholar 

  79. Claas FH, Abbott PA, Witvliet MD, et al. No direct clinical relevance of the human leucocyte antigen (HLA) system in clozapine-induced agranulocytosis. Drug Saf 1992; 7 Suppl. 1: 3–6

    PubMed  Google Scholar 

  80. Yunis JJ, Corzo D, Salazar M, et al. Hla associations in clozapine-induced agranulocytosis. Blood 1995; 86: 1177–83

    PubMed  CAS  Google Scholar 

  81. Corzo D, Yunis JJ, Salazar M, et al. The major histocompatibility complex region marked by hsp70-1 and hsp70-2 variants is associated with clozapine-induced agranulocytosis in 2 different ethnic-groups. Blood 1995; 86: 3835–40

    PubMed  CAS  Google Scholar 

  82. Filippovich I, Sorokina N, Khanna KK, et al. Butyrate-induced apoptosis in lymphoid cells preceded by transient over-expression of HSP70 mRNA. Biochem Biophys Res Commun 1994; 257: 198–204

    Google Scholar 

  83. Takeda Y, Watanabe H, Yonehara S, et al. Rapid acceleration of neutrophil apoptosis by tumor-necrosis-factor-alpha. Int Immunol 1993; 5: 691–4

    PubMed  CAS  Google Scholar 

  84. Park BK, Pirmohamed M, Tingle MD, et al. Bioactivation and bioinactivation of drugs and drug metabolites: relevance to adverse drug reactions. Toxicol In Vitro 1994; 8: 613–21

    PubMed  CAS  Google Scholar 

  85. Neftel KA, Woodtly W, Schmid M, et al. Amodiaquine induced agranulocytosis and liver damage. BMJ 1986; 292: 721–3

    PubMed  CAS  Google Scholar 

  86. Clarke JB, Maggs JL, Kitteringham NR, et al. Immunogenicity of amodiaquine in the rat. Int Arch Allergy Appl Immunol 1990; 91: 335–42

    PubMed  CAS  Google Scholar 

  87. Tingle MD, Jewell H, Maggs JL, et al. The bioactivation of amodiaquine by human polymorphonuclear leukocytes in vitro — chemical mechanisms and the effects of fluorine substitution. Biochem Pharmacol 1995; 50: 1113–9

    PubMed  CAS  Google Scholar 

  88. Harrison AC, Kitteringham NR, Clarke JB, et al. The mechanism of bioactivation and antigen formation of amodiaquine in the rat. Biochem Pharmacol 1992; 43: 1421–30

    PubMed  CAS  Google Scholar 

  89. Jewell H, Maggs JL, Harrison AC, et al. Role of hepatic metabolism in the bioactivation and detoxication of amodiaquine. Xenobiotica 1995; 25: 199–217

    PubMed  CAS  Google Scholar 

  90. Maggs JL, Tingle MD, Kitteringham NR, et al. Drug-protein conjugates. XIV. Mechanism of formation of protein-arylat-ing intermediates from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol 1988; 37: 303–11

    PubMed  CAS  Google Scholar 

  91. Clarke JB, Neftel K, Kitteringham NR, et al. Detection of antidrug IgG antibodies in patients with adverse drug reactions to amodiaquine. Int Arch Allergy Appl Immunol 1991; 95: 369–75

    PubMed  CAS  Google Scholar 

  92. Lind DE, Levi JA, Vincent PC. Amodiaquine-induced agranulocytosis: toxic effect of amodiaquine in bone marrow cultures in vitro. BMJ 1973; 1: 458–60

    PubMed  CAS  Google Scholar 

  93. Ruscoe JE, Jewell H, Maggs JL, et al. The effect of chemical substitution on the metabolic-activation, metabolic detoxication, and pharmacological activity of amodiaquine in the mouse. J Pharmacol Exp Ther 1995; 273: 393–404

    PubMed  CAS  Google Scholar 

  94. Kane JM. Newer antipsychotic drugs. A review of their pharmacology and therapeutic potential. Drugs 1993; 46: 585–93

    PubMed  CAS  Google Scholar 

  95. Gerlach J, Peacock L. New antipsychotics: the present status. Int Clin Psychopharmacol 1995; 10 Suppl. 3: 39–48

    PubMed  Google Scholar 

  96. Livingston MG. Risperidone. Lancet 1994; 343: 457–60

    PubMed  CAS  Google Scholar 

  97. Kerwin R. Adverse drug reaction reporting and new antipsychotics. Lancet 1993; 342: 1440

    PubMed  CAS  Google Scholar 

  98. Laidlaw ST, Snowden JA, Brown MJ. Aplastic anaemia and remoxipride [letter]. Lancet 1993; 342: 1245

    PubMed  CAS  Google Scholar 

  99. Philpott NJ, Marsh JC, Gordon-Smith EC, et al. Aplastic anaemia and remoxipride. Lancet 1993; 342: 1244–5

    PubMed  CAS  Google Scholar 

  100. Park BK, Kitteringham NR. Effects of fluorine substitution on drug metabolism — pharmacological and toxicological implications. Drug Metab Rev 1994; 26: 605–43

    PubMed  CAS  Google Scholar 

  101. Davis DA, dePaulis T, Janowsky A, et al. Chloro-substituted, sterically hindered 5,11-dicarbo analogues of clozapine as potent chiral antipsychotic agents. J Med Chem 1990; 33: 809–14

    PubMed  CAS  Google Scholar 

  102. Rabey JM, Treves TA, Neufeld MY, et al. Low-dose clozapine in the treatment of levodopa-induced mental disturbances in Parkinson’s disease. Neurology 1995; 45: 432–4

    PubMed  CAS  Google Scholar 

  103. Sajatovic M, Ramirez L. Clozapine therapy in patients with neurologic illness. Int J Psychiatry Med 1995; 25: 331–44

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir Pirmohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirmohamed, M., Park, K. Mechanism of Clozapine-Induced Agranulocytosis. CNS Drugs 7, 139–158 (1997). https://doi.org/10.2165/00023210-199707020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199707020-00005

Keywords

Navigation