Skip to main content
Log in

Use of Low-Molecular-Weight Heparins and New Anticoagulants in Elderly Patients with Renal Impairment

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Elderly people with renal impairment are at high risk for venous thromboembolism (VTE) and acute coronary syndromes (ACS); however, they are also at increased risk for bleeding complications. Evidence-based data for the management of anticoagulation in elderly patients with severe renal impairment, in particular, are limited. These patients are frequently excluded from randomized clinical trials evaluating anticoagulants, confounding clinical decision making. Low-molecular-weight heparins (LMWHs), such as enoxaparin sodium and dalteparin sodium, provide a predictable anticoagulant effect across almost all patient populations; however, because they are primarily eliminated through the kidneys, elderly patients with moderate or severe renal impairment are potentially at risk for LMWH accumulation. Clinical evidence suggests that treatment with full-dose enoxaparin sodium could increase the risk for bleeding in elderly patients with severe renal impairment; however, this risk is ameliorated with approved dose adjustments. Dalteparin sodium has been evaluated in small studies within this population but no strategy for reduced dosing has been developed.

There are limited clinical data on the use of fondaparinux sodium and, in particular, the new anticoagulants, such as dabigatran etexilate and rivaroxaban, in elderly patients with renal impairment. Evidence suggests that the clearance of fondaparinux sodium is mildly reduced in elderly patients, and more substantially reduced in patients with severe renal impairment; a dose reduction has recently been approved in Europe. Age and renal function appear to affect the exposure of dabigatran etexilate. A dose reduction is recommended in the elderly and in those with moderate renal function, but dabigatran etexilate is contraindicated in severe renal impairment. Rivaroxaban has been associated with increased exposure and pharmacodynamic effects in the elderly and those with renal impairment; at present there is no facility for dose reduction. Monitoring anticoagulant activity may help improve the safety profile of anticoagulants in elderly patients with renal impairment, particularly when approved dose reductions are unavailable. However, unlike the LMWHs, clinical surveillance of the new anticoagulants is challenging.

In conclusion, extra care should be taken when anticoagulants are administered to elderly patients with renal impairment. Additional data are needed, particularly for the new anticoagulants, in order to guide the prevention and treatment of VTE and ACS, and to ensure the optimal safety profile in older patients with renal impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Stein PD, Hull RD, Kayali F, et al. Venous thromboembolism according to age: the impact of an aging population. Arch Intern Med 2004; 164(20): 2260–5

    Article  PubMed  Google Scholar 

  2. Cook LM, Kahn SR, Goodwin J, et al. Frequency of renal impairment, advanced age, obesity and cancer in venous thromboembolism patients in clinical practice [published erratum appears in J Thromb Haemost 2007; 5 (8): 1791]. J Thromb Haemost 2007; 5(5): 937–41

    Article  PubMed  CAS  Google Scholar 

  3. Spencer FA, Gore JM, Lessard D, et al. Venous thromboembolism in the elderly: a community-based perspective. Thromb Haemost 2008; 100(5): 780–8

    PubMed  CAS  Google Scholar 

  4. Swedko PJ, Clark HD, Paramsothy K, et al. Serum creatinine is an inadequate screening test for renal failure in elderly patients. Arch Intern Med 2003; 163(3): 356–60

    Article  PubMed  CAS  Google Scholar 

  5. Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet 2005; 365(9456): 331–40

    Google Scholar 

  6. López-Jiménez L, Montero M, González-Fajardo JA, et al. Venous thromboembolism in very elderly patients: findings from a prospective registry (RIETE). Haematologica 2006; 91(8): 1046–51

    PubMed  Google Scholar 

  7. Hull RD. Revisiting the past strengthens the present: an evidence-based medicine approach for the diagnosis of deep venous thrombosis. Ann Intern Med 2005; 142(7): 583–5

    PubMed  Google Scholar 

  8. Kearon C. Balancing risks and benefits of extended anticoagulant therapy for idiopathic venous thrombosis. J Thromb Haemost 2009; 7Suppl. 1: 296–300

    Article  PubMed  CAS  Google Scholar 

  9. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH harmonised tripartite guideline. Studies in support of special populations: geriatrics E7. Geneva: ICH, 1993 Jun 24 [online]. Available from URL: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E7/Step4/E7_Guideline.pdf [Accessed 2010 Apr 7]

    Google Scholar 

  10. Turnheim K. When drug therapy gets old: pharmacokinetics and pharmacodynamics in the elderly. Exp Gerontol 2003; 38(8): 843–53

    Article  PubMed  CAS  Google Scholar 

  11. Balducci L, Schonwetter R, Gray J, et al. Individualized treatment of the older cancer patient: a decision analysis [abstract]. Am Geriatr Soc Proceed 1990; 58: 61a

    Google Scholar 

  12. Majeed F, Kelemen MD. Acute coronary syndromes in the elderly. Clin Geriatr Med 2007; 23(2): 425–40, viii

    Article  PubMed  Google Scholar 

  13. Stone PH, Thompson B, Anderson HV, et al. Influence of race, sex, and age on management of unstable angina and non-Q-wave myocardial infarction: the TIMI III registry. JAMA 1996; 275(14): 1104–12

    Article  PubMed  CAS  Google Scholar 

  14. Lim W, Dentali F, Eikelboom JW, et al. Meta-analysis: low-molecular-weight heparin and bleeding in patients with severe renal insufficiency. Ann Intern Med 2006; 144(9): 673–84

    PubMed  CAS  Google Scholar 

  15. Falgá C, Capdevila JA, Soler S, et al. Clinical outcome of patients with venous thromboembolism and renal insufficiency: findings from the RIETE registry. Thromb Haemost 2007; 98(4): 771–6

    PubMed  Google Scholar 

  16. Lim W. Low-molecular-weight heparin in patients with chronic renal insufficiency. Intern Emerg Med 2008; 3(4): 319–23

    Article  PubMed  Google Scholar 

  17. Nutescu EA, Spinler SA, Wittkowsky A, et al. Low-molecular-weight heparins in renal impairment and obesity: available evidence and clinical practice recommendations across medical and surgical settings. Ann Pharmacother 2009; 43(6): 1064–83

    Article  PubMed  CAS  Google Scholar 

  18. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999; 130(6): 461–70

    PubMed  CAS  Google Scholar 

  19. Gouin-Thibault I, Pautas E, Mahé I, et al. Is Modification of Diet in Renal Disease formula similar to Cockcroft-Gault formula to assess renal function in elderly hospitalized patients treated with low-molecular-weight heparin? J Gerontol A Biol Sci Med Sci 2007; 62(11): 1300–5

    Article  PubMed  Google Scholar 

  20. Pedone C, Corsonello A, Incalzi RA, et al. Estimating renal function in older people: a comparison of three formulas. Age Ageing 2006; 35(2): 121–6

    Article  PubMed  Google Scholar 

  21. Garg AX, Papaioannou A, Ferko N, et al. Estimating the prevalence of renal insufficiency in seniors requiring long-term care. Kidney Int 2004; 65(2): 649–53

    Article  PubMed  Google Scholar 

  22. Lamb EJ, Wood J, Stowe HJ, et al. Susceptibility of glomerular filtration rate estimations to variations in creatinine methodology: a study in older patients. Ann Clin Biochem 2005; 42 (Pt 1): 11–8

    Article  PubMed  CAS  Google Scholar 

  23. Van Pottelbergh G, Van Heden L, Matheï C, et al. Methods to evaluate renal function in elderly patients: a systematic literature review. Age Ageing 2010; 39(5): 542–8

    Article  PubMed  Google Scholar 

  24. Laboratory professionals: estimating GFR. Bethesda (MD): National Kidney Disease Education Program [online]. Available from URL: http://www.nkdep.nih.gov/labprofessionals/estimating_gfr.htm [Accessed 2010 Sep 8]

  25. Poggio ED, Wang X, Greene T, et al. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol 2005; 16(2): 459–66

    Article  PubMed  Google Scholar 

  26. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006; 145(4): 247–54

    PubMed  CAS  Google Scholar 

  27. Coresh J, Stevens LA. Kidney function estimating equations: where do we stand? Curr Opin Nephrol Hypertens 2006; 15(3): 276–84

    Article  PubMed  Google Scholar 

  28. Spruill WJ, Wade WE, Cobb 3rd HH. Comparison of estimated glomerular filtration rate with estimated creatinine clearance in the dosing of drugs requiring adjustments in elderly patients with declining renal function. Am J Geriatr Pharmacother 2008; 6(3): 153–60

    Article  PubMed  Google Scholar 

  29. Péquignot R, Belmin J, Chauvelier S, et al. Renal function in older hospital patients is more accurately estimated using the Cockcroft-Gault formula than the modification diet in renal disease formula. J Am Geriatr Soc 2009; 57(9): 1638–43

    Article  PubMed  Google Scholar 

  30. Roblin I, De Sobarnitsky S, Basselin C, et al. Estimated glomerular filtration rate for drug dose adjustment: Cockcroft and Gault or abbreviated MDRD equation? Clin Biochem 2009; 42(1–2): 111–3

    Article  PubMed  CAS  Google Scholar 

  31. Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 2003; 139(2): 137–47

    PubMed  Google Scholar 

  32. Lovenox® (enoxaparin sodium injection): US prescribing information. Bridgewater (NJ): sanofi-aventis, 2009

  33. Fragmin® (dalteparin sodium): Canadian product monograph. Kirkland (QC): Pfizer Canada Inc., 2009

  34. Innohep® (tinzaparin sodium injection): US prescribing information. Summit (NJ): Celgene, 2009

  35. Mismetti P, Laporte-Simitsidis S, Navarro C, et al. Aging and venous thromboembolism influence the pharmacodynamics of the anti-factor Xa and anti-thrombin activities of a low molecular weight heparin (nadroparin). Thromb Haemost 1998; 79(6): 1162–5

    PubMed  CAS  Google Scholar 

  36. Sanderink GJ, Guimart CG, Ozoux ML, et al. Pharmacokinetics and pharmacodynamics of the prophylactic dose of enoxaparin once daily over 4 days in patients with renal impairment. Thromb Res 2002; 105(3): 225–31

    Article  PubMed  CAS  Google Scholar 

  37. Cestac P, Bagheri H, Lapeyre-Mestre M, et al. Utilisation and safety of low molecular weight heparins: prospective observational study in medical inpatients. Drug Saf 2003; 26(3): 197–207

    Article  PubMed  CAS  Google Scholar 

  38. Mahé I, Aghassarian M, Drouet L, et al. Tinzaparin and enoxaparin given at prophylactic dose for eight days in medical elderly patients with impaired renal function: a comparative pharmacokinetic study. Thromb Haemost 2007; 97(4): 581–6

    PubMed  Google Scholar 

  39. Nagge J, Crowther M, Hirsh J. Is impaired renal function a contraindication to the use of low-molecular-weight heparin? Arch Intern Med 2002; 162(22): 2605–9

    Article  PubMed  Google Scholar 

  40. Leizorovicz A. Tinzaparin compared to unfractionated heparin for initial treatment of deep vein thrombosis in very elderly patients with renal insufficiency: the IRIS trial [abstract no. 434]. Blood 2008; 112(11): 434

    Google Scholar 

  41. Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 2008; 133(6 Suppl.): 381S–453S

    Article  PubMed  CAS  Google Scholar 

  42. Schmid P, Fischer AG, Wuillemin WA. Low-molecular-weight heparin in patients with renal insufficiency. Swiss Med Wkly 2009; 139(31–32): 438–52

    PubMed  CAS  Google Scholar 

  43. Clark NP. Low-molecular-weight heparin use in the obese, elderly, and in renal insufficiency. Thromb Res 2008; 123Suppl. 1: S58–61

    Article  PubMed  CAS  Google Scholar 

  44. Hirsh J, Bauer KA, Donati MB, et al. Parenteral anticoagulants: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 2008; 133(6 Suppl.): 141S–59S

    Article  PubMed  CAS  Google Scholar 

  45. Kearon C, Kahn SR, Agnelli G, et al. Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 2008; 133(6 Suppl.): 454S–545S

    Article  PubMed  CAS  Google Scholar 

  46. Gouin-Thibault I, Siguret V, Pautas E. A need for evidence-based clinical practice guidelines for the use of heparins in the elderly. Clin Interv Aging 2010; 5: 119–21

    Article  PubMed  CAS  Google Scholar 

  47. French Health Products Safety Agency. Recommendations for good practice: prevention and treatment of venous thromboembolism in medicine. Rationale [in French]. Agence française de sécurité sanitaire des produits de santé, 2009 Dec [online]. Available from URL: http://www.afssaps.fr/content/download/22578/285849/version/5/file/RBPThromboemboliqueVeineuse-Argu.pdf [Accessed 2011 Jan 17]

    Google Scholar 

  48. Thorevska N, Amoateng-Adjepong Y, Sabahi R, et al. Anticoagulation in hospitalized patients with renal insufficiency: a comparison of bleeding rates with unfractionated heparin vs enoxaparin. Chest 2004; 125(3): 856–63

    Article  PubMed  CAS  Google Scholar 

  49. Monreal M, Falgá C, Valle R, et al. Venous thromboembolism in patients with renal insufficiency: findings from the RIETE registry. Am J Med 2006; 119(12): 1073–9

    Article  PubMed  Google Scholar 

  50. Collet JP, Montalescot G, Agnelli G, et al. Non-ST-segment elevation acute coronary syndrome in patients with renal dysfunction: benefit of low-molecular-weight heparin alone or with glycoprotein IIb/IIIa inhibitors on outcomes. The Global Registry of Acute Coronary Events. Eur Heart J 2005; 26(21): 2285–93

    Article  PubMed  Google Scholar 

  51. Lopes RD, Alexander KP, Marcucci G, et al. Outcomes in elderly patients with acute coronary syndromes randomized to enoxaparin vs. unfractionated heparin: results from the SYNERGY trial. Eur Heart J 2008; 29(15): 1827–33

    Article  PubMed  CAS  Google Scholar 

  52. Spinler SA, Mahaffey KW, Gallup D, et al. Relationship between renal function and outcomes in high-risk patients with non-ST-segment elevation acute coronary syndromes: results from SYNERGY. Int J Cardiol 2010; 144(1): 36–41

    Article  PubMed  Google Scholar 

  53. White HD, Braunwald E, Murphy SA, et al. Enoxaparin vs. unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction in elderly and younger patients: results from ExTRACT-TIMI 25. Eur Heart J 2007; 28(9): 1066–71

    Article  PubMed  CAS  Google Scholar 

  54. Cohen M, Demers C, Gurfinkel EP, et al. A comparison of low-molecular-weight heparin with unfractionated heparin for unstable coronary artery disease. N Engl J Med 1997; 337(7): 447–52

    Article  PubMed  CAS  Google Scholar 

  55. Antman EM, McCabe CH, Gurfinkel EP, et al. Enoxaparin prevents death and cardiac ischemic events in unstable angina/non-Q-wave myocardial infarction: results of the Thrombolysis in Myocardial Infarction (TIMI) 11B trial. Circulation 1999; 100(15): 1593–601

    Article  PubMed  CAS  Google Scholar 

  56. Spinler SA, Inverso SM, Cohen M, et al. Safety and efficacy of unfractionated heparin versus enoxaparin in patients who are obese and patients with severe renal impairment: analysis from the ESSENCE and TIMI 11B studies. Am Heart J 2003; 146(1): 33–41

    Article  PubMed  CAS  Google Scholar 

  57. Kruse MW, Lee JJ. Retrospective evaluation of a pharmacokinetic program for adjusting enoxaparin in renal impairment. Am Heart J 2004; 148(4): 582–9

    Article  PubMed  CAS  Google Scholar 

  58. Green B, Greenwood M, Saltissi D, et al. Dosing strategy for enoxaparin in patients with renal impairment presenting with acute coronary syndromes. Br J Clin Pharmacol 2005; 59(3): 281–90

    Article  PubMed  CAS  Google Scholar 

  59. Lachish T, Rudensky B, Slotki I, et al. Enoxaparin dosage adjustment in patients with severe renal failure: antifactor Xa concentrations and safety. Pharmacotherapy 2007; 27(10): 1347–52

    Article  PubMed  CAS  Google Scholar 

  60. Samama MM, Cohen AT, Darmon JY, et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in Medical Patients with Enoxaparin Study Group. N Engl J Med 1999; 341(11): 793–800

    Article  PubMed  CAS  Google Scholar 

  61. McGarry LJ, Stokes ME, Thompson D. Outcomes of thromboprophylaxis with enoxaparin vs. unfractionated heparin in medical inpatients. Thromb J 2006; 4: 17

    Article  PubMed  Google Scholar 

  62. Mahe I, Gouin-Thibault I, Drouet L, et al. Elderly medical patients treated with prophylactic dosages of enoxaparin: influence of renal function on anti-Xa activity level. Drugs Aging 2007; 24(1): 63–71

    Article  PubMed  CAS  Google Scholar 

  63. Berges A, Laporte S, Epinat M, et al. Anti-factor Xa activity of enoxaparin administered at prophylactic dosage to patients over 75 years old. Br J Clin Pharmacol 2007; 64(4): 428–38

    Article  PubMed  CAS  Google Scholar 

  64. Leizorovicz A, Cohen AT, Turpie AG, et al. Randomized, placebo-controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients. Circulation 2004; 110(7): 874–9

    Article  PubMed  CAS  Google Scholar 

  65. Tincani E, Mannucci C, Casolari B, et al. Safety of dalteparin for the prophylaxis of venous thromboembolism in elderly medical patients with renal insufficiency: a pilot study. Haematologica 2006; 91(7): 976–9

    PubMed  CAS  Google Scholar 

  66. Cook D, Douketis J, Meade M, et al. Venous thromboembolism and bleeding in critically ill patients with severe renal impairment receiving dalteparin thromboprophylaxis: prevalence, incidence and risk factors. Crit Care 2008; 12(2): R32

    Article  PubMed  Google Scholar 

  67. Douketis J, Cook D, Meade M, et al. Prophylaxis against deep vein thrombosis in critically ill patients with severe renal insufficiency with the low-molecular-weight heparin dalteparin: an assessment of safety and pharmacodynamics. The DIRECT study. Arch Intern Med 2008; 168(16): 1805–12

    Article  PubMed  CAS  Google Scholar 

  68. Rabbat CG, Cook DJ, Crowther MA, et al. Dalteparin thromboprophylaxis for critically ill medical-surgical patients with renal insufficiency. J Crit Care 2005; 20(4): 357–63

    Article  PubMed  Google Scholar 

  69. Schmid P, Brodmann D, Odermatt Y, et al. Study of bioaccumulation of dalteparin at a therapeutic dose in patients with renal impairment. J Thromb Haemost 2009; 7(10): 1629–32

    Article  PubMed  CAS  Google Scholar 

  70. Schmid P, Brodmann D, Fischer AG, et al. Study of bioaccumulation of dalteparin at a prophylactic dose in patients with various degrees of impaired renal function. J Thromb Haemost 2009; 7(4): 552–8

    Article  PubMed  CAS  Google Scholar 

  71. Pautas E, Gouin I, Bellot O, et al. Safety profile of tinzaparin administered once daily at a standard curative dose in two hundred very elderly patients. Drug Saf 2002; 25(10): 725–33

    Article  PubMed  CAS  Google Scholar 

  72. Siguret V, Pautas E, Février M, et al. Elderly patients treated with tinzaparin (Innohep) administered once daily (175 anti-Xa IU/kg): anti-Xa and anti-IIa activities over 10 days. Thromb Haemost 2000; 84(5): 800–4

    PubMed  CAS  Google Scholar 

  73. Barrett JS, Gibiansky E, Hull RD, et al. Population pharmacodynamics in patients receiving tinzaparin for the prevention and treatment of deep vein thrombosis. Int J Clin Pharmacol Ther 2001; 39(10): 431–46

    PubMed  CAS  Google Scholar 

  74. Arixtra 1.5mg/0.3ml solution for injection: summary of product characteristics. London: European Medicines Agency, an Agency of the European Union [online]. Available from URL: http://www.emea.europa.eu/humandocs/PDFs/EPAR/arixtra/H-403-PI-en.pdf [Accessed 2010 Apr 7]

  75. Arixtra® (fondaparinux sodium): US prescribing information. Research Triangle Park (NC): GlaxoSmithKline, 2010

  76. Xarelto 10 mg film-coated tablets: summary of product characteristics. London: European Medicines Agency, an Agency of the European Union [online]. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000944/WC500057108.pdf [Accessed 2010 Dec 21]

  77. Xarelto® (rivaroxaban tablet): Canadian product monograph. Toronto (ON): Bayer Inc., 2008

  78. Pradaxa 75 mg hard capsules: summary of product characteristics. London: European Medicines Agency, an Agency of the European Union [online]. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000829/WC500041059.pdf [Accessed 2010 Dec 21]

  79. Cohen AT, Davidson BL, Gallus AS, et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: randomised placebo controlled trial. BMJ 2006; 332(7537): 325–9

    Article  PubMed  CAS  Google Scholar 

  80. Fox KA, Bassand JP, Mehta SR, et al. Influence of renal function on the efficacy and safety of fondaparinux relative to enoxaparin in non ST-segment elevation acute coronary syndromes. Ann Intern Med 2007; 147(5): 304–10

    PubMed  Google Scholar 

  81. Turpie AG, Lensing AW, Fuji T, et al. Pharmacokinetic and clinical data supporting the use of fondaparinux 1.5 mg once daily in the prevention of venous thromboembolism in renally impaired patients. Blood Coagul Fibrinolysis 2009; 20(2): 114–21

    Article  PubMed  CAS  Google Scholar 

  82. Mismetti P, Rosencher N, Samama C, et al. Fondaparinux 1.5 mg in patients with moderate to severe renal impairment undergoing major orthopedic surgery: the PROPICE study [abstract no. OC-WE-002]. J Thromb Haemost 2009; 7Suppl. 2: 200

    Google Scholar 

  83. Dahl OE. Dabigatran etexilate: an oral direct thrombin inhibitor. Therapy 2008; 5(5): 685–95

    Article  CAS  Google Scholar 

  84. Trocóniz IF, Tillmann C, Liesenfeld KH, et al. Population pharmacokinetic analysis of the new oral thrombin inhibitor dabigatran etexilate (BIBR 1048) in patients undergoing primary elective total hip replacement surgery. J Clin Pharmacol 2007; 47(3): 371–82

    Article  PubMed  Google Scholar 

  85. Stangier J, Stähle H, Rathgen K, et al. Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin Pharmacokinet 2008; 47(1): 47–59

    Article  PubMed  CAS  Google Scholar 

  86. Stangier J, Rathgen K, Stähle H, et al. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: an open-label, parallel-group, single-centre study. Clin Pharmacokinet 2010 Apr 1; 49(4): 259–68

    Article  PubMed  CAS  Google Scholar 

  87. Dahl OE, Kurth AA, Rosencher N, et al. Dabigatran etexilate 150mg once daily for the prevention of venous thromboembolism after total knee or hip replacement surgery in the elderly and those with moderate renal impairment [abstract no. PP-WE-205]. J Thromb Haemost 2009; 7Suppl. 2: 695

    Google Scholar 

  88. Ezekowitz MD, Reilly PA, Nehmiz G, et al. Dabigatran with or without concomitant aspirin compared with warfarin alone in patients with nonvalvular atrial fibrillation (PETRO study). Am J Cardiol 2007; 100(9): 1419–26

    Article  PubMed  CAS  Google Scholar 

  89. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009; 361(12): 1139–51

    Article  PubMed  CAS  Google Scholar 

  90. Weinz C, Schwarz T, Kubitza D, et al. Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans. Drug Metab Dispos 2009; 37(5): 1056–64

    Article  PubMed  CAS  Google Scholar 

  91. Halabi A, Maatouk H, Klause N, et al. Effects of renal impairment on the pharmacology of rivaroxaban (BAY 59-7939): an oral, direct, factor Xa inhibitor [abstract no. 913]. Blood 2006; 108(11): 913

    Google Scholar 

  92. Mueck W, Eriksson BI, Bauer KA, et al. Population pharmacokinetics and pharmacodynamics of rivaroxaban — an oral, direct factor Xa inhibitor — in patients undergoing major orthopaedic surgery. Clin Pharmacokinet 2008; 47(3): 203–16

    Article  PubMed  CAS  Google Scholar 

  93. Kubitza D, Becka M, Mueck W, et al. The effect of extreme age, and gender, on the pharmacology and tolerability of rivaroxaban: an oral, direct factor Xa inhibitor [abstract no. 905]. Blood 2006; 108(11): 905

    Google Scholar 

  94. Kubitza D, Becka M, Roth A, et al. Dose-escalation study of the pharmacokinetics and pharmacodynamics of rivaroxaban in healthy elderly subjects. Curr Med Res Opin 2008; 24(10): 2757–65

    Article  PubMed  CAS  Google Scholar 

  95. Bauer KA, Turpie AGG, Lassen MR, et al. Effects of age, weight, gender and renal function in a pooled analysis of four rivaroxaban studies [abstract no. PP-WE-421]. J Thromb Haemost 2009; 7Suppl. 2: 767

    Google Scholar 

  96. US Food and Drug Administration, US Department of Health & Human Services. Briefing information for the March 19, 2009 Cardiovascular and Renal Drugs Advisory Committee [online]. Available from URL: http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/ucml38368.htm [Accessed 2010 Apr 7]

  97. Becker RC, Spencer FA, Gibson M, et al. Influence of patient characteristics and renal function on factor Xa inhibition pharmacokinetics and pharmacodynamics after enoxaparin administration in non-ST-segment elevation acute coronary syndromes. Am Heart J 2002; 143(5): 753–9

    Article  PubMed  CAS  Google Scholar 

  98. Chow SL, Zammit K, West K, et al. Correlation of anti-factor Xa concentrations with renal function in patients on enoxaparin. J Clin Pharmacol 2003; 43(6): 586–90

    PubMed  CAS  Google Scholar 

  99. Robert-Ebadi H, Le Gal G, Righini M. Use of anticoagulants in elderly patients: practical recommendations. Clin Interv Aging 2009; 4: 165–77

    PubMed  CAS  Google Scholar 

  100. Samama MM, Le Flem L, Guinet C, et al. Effects of rivaroxaban and fondaparinux on clotting assays [abstract no. P173]. Pathophysiol Haemost Thromb 2008; 36Suppl. 1: A68

    Google Scholar 

  101. Liesenfeld KH, Schäfer HG, Trocóniz IF, et al. Effects of the direct thrombin inhibitor dabigatran on ex vivo coagulation time in orthopaedic surgery patients: a population model analysis. Br J Clin Pharmacol 2006; 62(5): 527–37

    Article  PubMed  CAS  Google Scholar 

  102. Amiral JJ, Vissac AM, Peyrafitte M. New assays for measuring direct thrombin inhibitors on plasma [abstract no. PP-MO-419]. J Thromb Haemost 2009; 7Suppl. 2: 459

    Google Scholar 

  103. Stangier J, Wetzel K, Wienen W, et al. Measurement of the pharmacodynamic effect of dabigatran etexilate: thrombin clotting time [abstract no. PP-TH-134]. J Thromb Haemost 2009; 7Suppl. 2: 978

    Google Scholar 

  104. Samama MM, Martinoli JL, LeFlem L, et al. Assessment of laboratory assays to measure rivaroxaban: an oral, direct factor Xa inhibitor. Thromb Haemost 2010; 103(4): 815–25

    Article  PubMed  CAS  Google Scholar 

  105. Tripodi A, Chantarangkul V, Guinet C, et al. The International Normalized Ratio calibrated for rivaroxaban has the potential to normalize prothrombin time results for rivaroxaban-treated patients: results of an in vitro study. J Thromb Haemost 2011; 9: 226–8

    Article  PubMed  CAS  Google Scholar 

  106. Eikelboom JW, Hirsh J. Combined antiplatelet and anticoagulant therapy: clinical benefits and risks. J Thromb Haemost 2007; 5Suppl. 1: 225–63

    Google Scholar 

  107. Holmes Jr DR, Kereiakes DJ, Kleiman NS, et al. Combining antiplatelet and anticoagulant therapies. J Am Coll Cardiol 2009; 54(2): 95–109

    Article  PubMed  CAS  Google Scholar 

  108. Heer T, Juenger C, Gitt AK, et al. Efficacy and safety of optimized antithrombotic therapy with aspirin, clopidogrel and enoxaparin in patients with non-ST segment elevation acute coronary syndromes in clinical practice. J Thromb Thrombolysis 2009; 28(3): 325–32

    Article  PubMed  CAS  Google Scholar 

  109. Mega JL, Braunwald E, Mohanavelu S, et al. Rivaroxaban versus placebo in patients with acute coronary syndromes (ATLAS ACS-TIMI 46): a randomised, double-blind, phase II trial. Lancet 2009; 374(9683): 29–38

    Article  PubMed  CAS  Google Scholar 

  110. US National Institutes of Health. ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2010 Apr 7]

  111. Patel MR, for ROCKET AF Executive Steering Committee. Stroke prevention using the oral direct factor Xa inhibitor rivaroxaban compared with warfarin in patients with nonvalvular atrial fibrillation (ROCKET AF) [abstract no. 21839]. American Heart Association Scientific Sessions; 2010 Nov 13–17; Chicago (IL). Science News [online]. Available from URL: http://sciencenews.myamericanheart.org/pdfs/Abstract_ROCKET_AF.pdf [Accessed 2010 Dec 21]

Download references

Acknowledgements

The author would like to thank Virginie Siguret and Isabelle Gouin-Thibault from the Assistance Publique Hôpitaux de Paris, Charles Foix, Laboratoire d’Hématologie, Ivry sur Seine and the Université Paris Descartes, INSERM U765, Paris, France, for their comments on the manuscript. The author received editorial/writing support in the preparation of this manuscript funded by sanofi-aventis U.S., Inc. Debbi Gorman, PhD, provided the editorial/writing support. The author is fully responsible for all content and editorial decisions, and received no financial support or other form of compensation related to the development of the manuscript.

Disclosures: The author is a consultant for Bayer Schering Pharma AG, sanofi-aventis, Eli Lilly and Daiichi Sankyo; a member of an advisory board/steering committee for Johnson & Johnson and Pfizer Laboratory; and an invited speaker/chairperson for sanofi-aventis, GlaxoSmithKline, Bayer Schering Pharma AG and Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meyer Michel Samama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samama, M.M. Use of Low-Molecular-Weight Heparins and New Anticoagulants in Elderly Patients with Renal Impairment. Drugs Aging 28, 177–193 (2011). https://doi.org/10.2165/11586730-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11586730-000000000-00000

Keywords

Navigation