Skip to main content
Log in

A Review of the Medical Challenges of Using Direct Oral Anticoagulants in Real-World Practice

  • Review Article
  • Published:
Therapeutic Innovation & Regulatory Science Aims and scope Submit manuscript

Abstract

Clinical guidelines for management of non-valvular atrial fibrillation or venous thromboembolism currently recommend direct oral anticoagulants as the preferred strategy for antithrombotic treatment. As a result, they are increasingly being used as an alternative to conventional therapy. However, they are unlikely to completely replace conventional approaches, due to a number of existing medical challenges. These challenges relate to the uncertainty of optimal dose regimens and the strategy of using them in specific patient populations with non-valvular atrial fibrillation or venous thromboembolism. The efficacy and safety profile of dabigatran among various regions may differ, depending on regional variations in dosing recommendations. Furthermore, optimal dose regimens may be different between Asian and non-Asian populations. It will be necessary to collect real-world clinical data on the use of edoxaban in patients with non-valvular atrial fibrillation with high-creatinine clearances, to determine the optimal dose required for stroke protection. In addition, the efficacy of combination therapy utilizing direct oral anticoagulants and antiplatelet agents has not yet been established in patients with non-valvular atrial fibrillation with acute coronary syndrome and/or percutaneous coronary intervention with stenting. Low-molecular-weight heparin is, therefore, suggested to be used in preference to vitamin K antagonists or direct oral anticoagulants in current clinical practice guidelines, as indirect comparisons suggests that oral anticoagulants are less effective than low-molecular-weight heparin. Consequently, we need to focus on the outcomes of ongoing studies and review more real-world data in heterogeneous populations to complement clinical data obtained from controlled studies with highly selective populations. Therefore, direct oral anticoagulants should be used with caution based on individual assessments of thromboembolic and bleeding risks as well as other clinical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society.Circulation. 2014;130(23):2071–104.

    Article  PubMed  Google Scholar 

  2. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Rev Esp Cardiol (Engl ed). 2017;70(1):50.

    Google Scholar 

  3. Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149(2):315–52.

    Article  PubMed  Google Scholar 

  4. Konstantinides SV, Torbicki A, Agnelli G, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35(43):3033–69 3069a-3069k.

    Article  CAS  PubMed  Google Scholar 

  5. Arepally GM, Ortel TL. Changing practice of anticoagulation: will target-specific anticoagulants replace warfarin? Annu Rev Med. 2015;66:241–53.

    Article  CAS  PubMed  Google Scholar 

  6. Sinauridze EI, Panteleev MA, Ataullakhanov FI. Anticoagulant therapy: basic principles, classic approaches and recent developments. Blood Coagul Fibrinol. 2012;23(6):482–93.

    Article  CAS  Google Scholar 

  7. Label information of COUMADIN. U.S. Food and Drug Administration. 2016. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/009218s116lbl.pdf. Accessed 1 Feb 2017.

  8. Label information of LOVENOX. U.S. Food and Drug Administration. 2013. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020164s102lbl.pdf. Accessed 27 May 2017.

  9. Label information of INNOHEP. U.S. Food and Drug Administration. 2010. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process. Accessed 27 May 2017.

  10. Label information of FRAGMIN. U.S. Food and Drug Administration. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020287s069lbl.pdf. Accessed 27 May 2017.

  11. Label information of ARIXTRA. U.S. Food and Drug Administration. 2014. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021345s032lbl.pdf. Accessed 27 May 2017.

  12. Cho IY, Choi KH, Sheen YY. How does “regulatory practice” create discrepancies in drug label information between Asian and Western Countries? Different label information for direct oral anticoagulants approved in the United States, Europe, Korea, and Japan. Therap Innov Regul Sci. 2018;53:233–42.

    Article  Google Scholar 

  13. Label information of PRADAXA. U.S. Food and Drug Administration. 2015. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/022512s028lbl.pdf. Accessed 8 Feb 2017.

  14. PRADAXA: EPAR-Product Information. European Medicines Agency. 2017. www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000829/WC500041059.pdf. Accessed 8 Feb 2017.

  15. Label information of Xarelto. U.S. Food and Drug Administration. 2016. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/022406s019s020lbl.pdf. Accessed 8 Feb 2017.

  16. XARELTO: EPAR-Product Information. European Medicines Agency. 2016. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000944/WC500057108.pdf. Accessed 8 Feb 2017.

  17. Label information of ELIQUIS. U.S. Food and Drug Administration. 2016. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/202155s012lbl.pdf. Accessed 8 Feb 2017.

  18. Eliquis: EPAR—Product Information European Medicines Agency. 2016. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002148/WC500107728.pdf. Accessed 8 Feb 2017.

  19. Label information of SAVAYSA. U.S. Food and Drug Administration. 2016. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/206316s004lbl.pdf. Accessed 8 Feb 2017.

  20. Lixiana: EPAR—Product Information European Medicines Agency. 2016. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002629/WC500189045.pdf. Accessed 8 Feb 2017.

  21. Yeh CH, Gross PL, Weitz JI. Evolving use of new oral anticoagulants for treatment of venous thromboembolism. Blood. 2014;124(7):1020–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pollack CV Jr, Reilly PA, Eikelboom J, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373(6):511–20.

    Article  CAS  PubMed  Google Scholar 

  23. ANDEXXA: Summary Basis for Regulatory Action. U.S. Food and Drug Administration. 2018. https://www.fda.gov/downloads/biologicsbloodvaccines/cellulargenetherapyproducts/approvedproducts/ucm610006.pdf. Accessed 6 June 2018.

  24. Cho IY. Using non-vitamin K oral anticoagulanats in specific patient populations: a study of Korean cases. Therap Clin Risk Manag. 2019;15:1183–206.

    Article  CAS  Google Scholar 

  25. Macle L, Cairns J, Leblanc K, et al. Focused update of the Canadian Cardiovascular Society guidelines for the management of atrial fibrillation. Can J Cardiol. 2016;32(10):1170–85.

    Article  PubMed  Google Scholar 

  26. Ko Y-J, Kim S, Park K, et al. Impact of the health insurance coverage policy on oral anticoagulant prescription among patients with atrial fibrillation in Korea from 2014 to 2016. J Korean Med Sci. 2018;33(23):e163.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ikeda T, Yasaka M, Kida M, Imura M. A survey of reasons for continuing warfarin therapy in the era of direct oral anticoagulants in Japanese patients with atrial fibrillation: the SELECT study. Patient Prefer Adher. 2018;12:135–43.

    Article  Google Scholar 

  28. Kim H, Kim H, Cho SK, Kim JB, Joung B, Kim C. Cost-effectiveness of rivaroxaban compared to warfarin for stroke prevention in atrial fibrillation. Korean Circ J. 2018;110:845–51.

    Google Scholar 

  29. Tanimoto T, Tsubokura M, Mori J, Pietrek M, Ono S, Kami M. Differences in drug approval processes of 3 regulatory agencies: a case study of gemtuzumab ozogamicin. Invest New Drugs. 2013;31(2):473–8.

    Article  PubMed  Google Scholar 

  30. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

    Article  CAS  PubMed  Google Scholar 

  31. Connolly SJ, Ezekowitz MD, Yusuf S, Reilly PA, Wallentin L. Newly identified events in the RE-LY trial. N Engl J Med. 2010;363(19):1875–6.

    Article  CAS  PubMed  Google Scholar 

  32. Connolly SJ, Wallentin L, Yusuf S. Additional events in the RE-LY trial. N Engl J Med. 2014;371(15):1464–5.

    Article  PubMed  Google Scholar 

  33. Graham DJ, Reichman ME, Wernecke M, et al. Cardiovascular, bleeding, and mortality risks in elderly Medicare patients treated with dabigatran or warfarin for nonvalvular atrial fibrillation. Circulation. 2015;131(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  34. Lee KH, Park HW, Lee N, et al. Optimal dose of dabigatran for the prevention of thromboembolism with minimal bleeding risk in Korean patients with atrial fibrillation. Europace. 2017;19(suppl_4):1–9.

    Article  Google Scholar 

  35. Chan NC, Coppens M, Hirsh J, et al. Real-world variability in dabigatran levels in patients with atrial fibrillation. J Thromb Haemost. 2015;13(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  36. Chan YH, Yen KC, See LC, et al. Cardiovascular, bleeding, and mortality risks of dabigatran in Asians with nonvalvular atrial fibrillation. Stroke. 2016;47(2):441–9.

    Article  CAS  PubMed  Google Scholar 

  37. Approved label of Pradaxa in Korea. Korean Ministry of Food and Drug Administration. 2017. http://www.health.kr/images/insert_pdf/IN_2011022100001_01.pdf. Accessed 21 July 2017.

  38. Approved label of Pradaxa in Japan. Pharmaceuticals and Medical Devices Agency. 2016. http://www.info.pmda.go.jp/go/pack/3339001M1024_1_11/. Accessed 21 July 2017.

  39. Beasley BN, Unger EF, Temple R. Anticoagulant options–why the FDA approved a higher but not a lower dose of dabigatran. N Engl J Med. 2011;364(19):1788–90.

    Article  CAS  PubMed  Google Scholar 

  40. Lip GY, Clemens A, Noack H, Ferreira J, Connolly SJ, Yusuf S. Patient outcomes using the European label for dabigatran. A post hoc analysis from the RE-LY database. Thromb Haemost. 2014;111(5):933–42.

    Article  CAS  PubMed  Google Scholar 

  41. Hernandez I. Time to reconsider dabigatran 110 mg in the USA. Am J Cardiovasc Drugs. 2015;15(5):307–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hori M, Connolly SJ, Zhu J, et al. Dabigatran versus warfarin: effects on ischemic and hemorrhagic strokes and bleeding in Asians and non-Asians with atrial fibrillation. Stroke. 2013;44(7):1891–6.

    Article  CAS  PubMed  Google Scholar 

  43. Chiang CE, Wang KL, Lip GY. Stroke prevention in atrial fibrillation: an Asian perspective. Thromb Haemost. 2014;111(5):789–97.

    Article  CAS  PubMed  Google Scholar 

  44. Risk assessment and risk mitigation review. U.S. Food and Drug Administration. 2015. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206316Orig1Orig2s000RiskR.pdf. Accessed 16 Feb 2017.

  45. Summary of the risk management plan (RMP) for Lixiana (edoxaban). European Medicines Agency. 2015. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Risk-management-plan_summary/human/002629/WC500186050.pdf. Accessed 27 Feb 2017.

  46. New drug approval report of LIXIANA. Korea Ministry of Food and Drug Safety. 2016. http://www.mfds.go.kr/index.do?x=0&searchkey=product_nm&mid=1176&searchword=릭시아나&cd=191&y=0&pageNo=1&seq=24202&cmd=v. Accessed 5 Apr 2017.

  47. Approved label of Lixiana in Japan. Pharmaceuticals and Medical Devices Agency. 2016. http://www.info.pmda.go.jp/go/pack/3339002F1020_1_08/. Accessed 21 July 2017.

  48. Lip GY, Windecker S, Huber K, et al. Management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous coronary or valve interventions: a joint consensus document of the European Society of Cardiology Working Group on Thrombosis, European Heart Rhythm Association (EHRA), European Association of Percutaneous Cardiovascular Interventions (EAPCI) and European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society (HRS) and Asia-Pacific Heart Rhythm Society (APHRS). Eur Heart J. 2014;35(45):3155–79.

    Article  CAS  PubMed  Google Scholar 

  49. Gibson CM, Mehran R, Bode C, et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N Engl J Med. 2016;375(25):2423–34.

    Article  CAS  PubMed  Google Scholar 

  50. Cannon CP, Bhatt DL, Oldgren J, et al. Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation. N Engl J Med. 2017;377(16):1513–24.

    Article  CAS  PubMed  Google Scholar 

  51. A study of apixaban in patients with atrial fibrillation, not caused by a heart valve problem, who are at risk for thrombosis (blood clots) due to having had a recent coronary event, such as a heart attack or a procedure to open the vessels of the heart (NCT02415400). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02415400?term=NCT02415400&rank=1. Accessed 28 Apr 2019.

  52. Edoxaban treatment versus vitamin K antagonist in patients with atrial fibrillation undergoing percutaneous coronary intervention (ENTRUST-AF-PCI, NCT02866175). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02866175?term=NCT02866175&rank=1. Accessed 28 Apr 2019.

  53. Heit JA, Silverstein MD, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ 3rd. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch Intern Med. 2000;160(6):809–15.

    Article  CAS  PubMed  Google Scholar 

  54. Halamkova J, Penka M. Current recommendations for the prevention and treatment of venous thromboembolism in cancer patients. Klin Onkol. 2017;30(2):100–5.

    Article  CAS  PubMed  Google Scholar 

  55. Carrier M, Cameron C, Delluc A, Castellucci L, Khorana AA, Lee AY. Efficacy and safety of anticoagulant therapy for the treatment of acute cancer-associated thrombosis: a systematic review and meta-analysis. Thromb Res. 2014;134(6):1214–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kim JH, Gwak HS. Novel oral anticoagulants for the treatment of venous thromboembolism in cancer patients. Korean J Clin Pharm. 2016;26(4):269–82.

    Google Scholar 

  57. Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361(24):2342–52.

    Article  CAS  PubMed  Google Scholar 

  58. Schulman S, Kakkar AK, Goldhaber SZ, et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation. 2014;129(7):764–72.

    Article  CAS  PubMed  Google Scholar 

  59. Bauersachs R, Berkowitz SD, Brenner B, et al. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2010;363(26):2499–510.

    Article  CAS  PubMed  Google Scholar 

  60. Buller HR, Prins MH, Lensin AW, et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N Engl J Med. 2012;366(14):1287–97.

    Article  PubMed  Google Scholar 

  61. Agnelli G, Buller HR, Cohen A, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369(9):799–808.

    Article  CAS  PubMed  Google Scholar 

  62. Buller HR, Decousus H, Grosso MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369(15):1406–15.

    Article  PubMed  CAS  Google Scholar 

  63. Riess H, Sinn M, Kreher S. CONKO-011: evaluation of patient satisfaction with the treatment of acute venous thromboembolism with rivaroxaban or low molecular weight heparin in cancer patients. A randomized phase III study. Dtsch Med Wochenschr. 2015;140(Suppl 1):22–3.

    Google Scholar 

  64. Raskob GE, van Es N, Verhamme P, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2017;378:615–24.

    Article  PubMed  Google Scholar 

  65. Young AM, Marshall A, Thirlwall J, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). J Clin Oncol. 2018;36:2017–23.

    Article  CAS  PubMed  Google Scholar 

  66. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.

    Article  CAS  PubMed  Google Scholar 

  67. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.

    Article  CAS  PubMed  Google Scholar 

  68. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

    Article  CAS  PubMed  Google Scholar 

  69. Schulman S, Kearon C, Kakkar AK, et al. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N Engl J Med. 2013;368(8):709–18.

    Article  CAS  PubMed  Google Scholar 

  70. Agnelli G, Buller HR, Cohen A, et al. Apixaban for extended treatment of venous thromboembolism. N Engl J Med. 2013;368(8):699–708.

    Article  CAS  PubMed  Google Scholar 

  71. Kim JH, Lim KM, Gwak HS. New anticoagulants for the prevention and treatment of venous thromboembolism. Biomol Therap. 2017;25(5):461–70.

    Article  CAS  Google Scholar 

  72. Bang OY, Hong KS, Heo JH, et al. New oral anticoagulants may be particularly useful for asian stroke patients. J Stroke. 2014;16(2):73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kim IY. Analysis of anticoagulants drug expenditure and usage: focused on stroke prevention in non-valvular atrial fibrillation in Korea. Seoul: The Graduate School, Sungkyunkwan University; 2018.

    Google Scholar 

  74. Hong J, Lee JH, Yhim HY, et al. Incidence of venous thromboembolism in Korea from 2009 to 2013. PLoS ONE. 2018;13(1):e0191897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Harrington AR, Armstrong EP, Nolan PE Jr, Malone DC. Cost-effectiveness of apixaban, dabigatran, rivaroxaban, and warfarin for stroke prevention in atrial fibrillation. Stroke. 2013;44(6):1676–81.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IlYoung Cho MS.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, I. A Review of the Medical Challenges of Using Direct Oral Anticoagulants in Real-World Practice. Ther Innov Regul Sci 54, 793–802 (2020). https://doi.org/10.1007/s43441-019-00001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43441-019-00001-9

Keywords

Navigation