Skip to main content
Log in

Comparative Pharmacokinetics and Pharmacodynamics of the Rifamycin Antibacterials

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The rifamycin antibacterials, rifampicin (rifampin), rifabutin and rifapentine, are uniquely potent in the treatment of patients with tuberculosis and chronic staphylococcal infections.

Absorption is variably affected by food; the maximal concentration of rifampicin is decreased by food, whereas rifapentine absorption is increased in the presence of food. The rifamycins are well-known inducers of enzyme systems involved in the metabolism of many drugs, most notably those metabolised by cytochrome P45O (CYP) 3A. The relative potency of the rifamycins as CYP3A inducers is rifampin > rifapentine > rifabutin; rifabutin is also a CYP3A substrate.

The antituberculosis activity of rifampicin is decreased by a modest dose reduction from 600 to 450mg. This somewhat surprising finding may be due to the binding of rifampicin to serum proteins, limiting free, active concentrations of the drug. However, increasing the administration interval (after the first 2 to 8 weeks of therapy) has little effect on the sterilising activity of rifampicin, suggesting that relatively brief exposures to a critical concentration of rifampicin are sufficient to kill intermittently metabolising mycobacterial populations. The high protein binding of rifapentine (97%) may explain the suboptimal efficacy of the currently recommended dose of this drug.

The toxicity of rifampicin is related to dose and administration interval, with increasing rates of presumed hypersensitivity with higher doses combined with administration frequency of once weekly or less. Rifabutin toxicity is related to dose and concomitant use of CYP3A inhibitors.

The rifamycins illustrate the complexity of predicting the pharmacodynamics of treatment of an intracellular pathogen with the capacity for dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. East African/ British Medical Research Council. Controlled trial of four short-course (6-month) regimens of chemotherapy for the treatment of pulmonary tuberculosis. Lancet 1974; II: 1100–6

    Google Scholar 

  2. Castelo A, Goihman S, Dalboni MA, et al. Comparison of daily and twice-weekly regimens to treat pulmonary tuberculosis. Lancet 1989; 334: 1173–6

    Google Scholar 

  3. Dutt AK, Jones L, Stead WW. Short-course chemotherapy for tuberculosis with largely twice-weekly isoniazid-rifampin. Chest 1979; 75: 441–7

    PubMed  CAS  Google Scholar 

  4. Cohn DL, Catlin BJ, Peterson KL, et al. A 62-dose, 6-month therapy for pulmonary and extrapulmonary tuberculosis: a twice-weekly, directly observed, and cost-effective regimen. Ann Intern Med 1990; 112: 407–15

    PubMed  CAS  Google Scholar 

  5. Singapore Tuberculosis Service/ British Medical Research Council. Isoniazid for pulmonary tuberculosis in Singapore: the results up to 30 months. Am Rev Respir Dis 1977; 116: 807–20

    Google Scholar 

  6. World Health Organization. Treatment of tuberculosis: guidelines for national programmes. Geneva: World Health Organization, 1997: 1–77

    Google Scholar 

  7. Gordin F, Chaisson R, Matts J, et al. Rifampin and pyrazinamide versus isoniazid for prevention of tuberculosis in HIV-infected persons: an international randomized trial. JAMA 2000; 283: 1445–50

    PubMed  CAS  Google Scholar 

  8. Zimmerli W, Widmer AF, Blatter M, et al. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized trial. JAMA 1998; 279: 1537–41

    PubMed  CAS  Google Scholar 

  9. Norden CW. Lessons learned from animal models of osteomyelitis. Rev Infect Dis 1988; 10: 103–10

    PubMed  CAS  Google Scholar 

  10. Drancourt M, Stein A, Argenson JN, et al. Oral rifampin plus ofloxacin for treatment of Staphylococcus-infected orthopedic implants. Antimicrob Agents Chemother 1993; 37: 1214–8

    PubMed  CAS  Google Scholar 

  11. Norden CW, Bryant R, Palmer D, et al. Chronic osteomyelitis caused by Staphylococcus aureus: controlled clinical trials of nafcillin therapy and nafcillin-rifampin therapy. South Med J 1986; 79: 947–51

    PubMed  CAS  Google Scholar 

  12. Heldman AW, Hartert TV, Ray SC, et al. Oral antibiotic treatment of right-sided staphylocccal endocarditis in injection drug users: prospective randomized comparison with parenteral therapy. Am J Med 1996; 101: 68–76

    PubMed  CAS  Google Scholar 

  13. Heifets LB, Iseman MD. Determination of in vitro susceptibility of mycobacteria to ansamycin. Am Rev Respir Dis 1985; 132: 710–1

    PubMed  CAS  Google Scholar 

  14. Schwander S, Rusch-Gerdes S, Mateega A, et al. Apilot study of antituberculosis combinations comparing rifabutin with rifampicin in the treatment of HIV-1 associated tuberculosis: a single-blind randomized evaluation in Ugandan patients with HIV-1 infection and pulmonary tuberculosis. Tuber Lung Dis 1995; 76: 210–8

    PubMed  CAS  Google Scholar 

  15. McGregor MM, Olliaro P, Wolmarans L, et al. Efficacy and safety of rifabutin in the treatment of patients with newly diagnosed pulmonary tuberculosis. Am J Respir Crit Care Med 1996; 154: 1462–7

    PubMed  CAS  Google Scholar 

  16. Perucca E, Grimaldi R, Frigo GM, et al. Comparative effects of rifabutin and rifampicin on hepatic microsomal enzyme activity in normal subjects. Eur J Clin Pharmacol 1988; 34: 595–9

    PubMed  CAS  Google Scholar 

  17. Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 1978; 3: 108–27

    PubMed  CAS  Google Scholar 

  18. Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 1997; 61: 544–53

    PubMed  CAS  Google Scholar 

  19. Keung ACF, Owens RC, Eller MG, et al. Pharmacokinetics of rifapentine in subjects seropositive for the human immunodeficiency virus: a phase I study. Antimicrob Agents Chemother 1999; 43: 1230–3

    PubMed  CAS  Google Scholar 

  20. Keung AC, Eller MG, McKenzie KA, et al. Single and multiple dose pharmacokinetics of rifapentine in man: part II. Int J Tuber Lung Dis 1999; 3: 437–44

    CAS  Google Scholar 

  21. Tam CM, Chan SL, Lam CW, et al. Rifapentine and isoniazid in the continuation phase of treating pulmonary tuberculosis: initial report. Am J Respir Crit Care Med 1998; 157: 1726–33

    PubMed  CAS  Google Scholar 

  22. Vernon A, for the Tuberculosis Treatment Consortium. TBTC Study 22 (rifapentine trial): preliminary results in HIV-negative patients [abstract]. Am J Respir Crit Care Med 2000; 161: A252

    Google Scholar 

  23. Hoechst Marion Roussel Inc. Rifapentine package insert. Kansas City (MO): Hoechst Marion Roussel Inc, 1998

    Google Scholar 

  24. Ji B, Truffot-Pernot C, LaCroix C, et al. Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis 1993; 148: 1541–6

    PubMed  CAS  Google Scholar 

  25. Keung AC, Reith K, Eller MG, et al. Enzyme induction observed in healthy volunteers after repeated administration of rifapentine and its lack of effect on steady-state rifapentine pharmacokinetics: part I. Int J Tuber Lung Dis 1999; 3: 426–36

    CAS  Google Scholar 

  26. Loos U, Musch E, Jensen JC, et al. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin Wochenschr 1985; 63: 1205–11

    PubMed  CAS  Google Scholar 

  27. Skinner MH, Blaschke TF. Clinical pharmacokinetics of rifabutin. Clin Pharmacokinet 1995; 28: 115–25

    PubMed  CAS  Google Scholar 

  28. Narang PK, Lewis RC, Bianchine JR. Rifabutin absorption in humans: relative bioavailability and food effect. Clin Pharmacol Ther 1992; 52: 335–41

    PubMed  CAS  Google Scholar 

  29. Chan SL, Yew WW, Porter JHD, et al. Comparison of Chinese and Western rifapentines and improvement by prior taking of various meals. Int J Antimicrob Agents 1994; 3: 267–74

    PubMed  CAS  Google Scholar 

  30. Nitti V, Virgilio R, Patricolo MR, et al. Pharmacokinetic study of intravenous rifampin. Chemotherapy 1977; 23: 1–6

    PubMed  CAS  Google Scholar 

  31. Skinner MH, Hseih M, Torseth J, et al. Pharmacokinetics of rifabutin. Antimicrob Agents Chemother 1989; 33: 1237–41

    PubMed  CAS  Google Scholar 

  32. Peloquin CA, Namdar R, Singleton MD, et al. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 1999; 115: 12–8

    PubMed  CAS  Google Scholar 

  33. Peloquin CA, Namdar R, Dodge AA, et al. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuber Lung Dis 1999; 3: 703–10

    CAS  Google Scholar 

  34. Tuberculosis Chemotherapy Centre, Madras. Acontrolled comparison of two fully supervised once-weekly regimens in the treatment of newly diagnosed pulmonary tuberculosis. Tubercle 1973; 54: 23–45

    Google Scholar 

  35. Purohit SD, Johri SC, Mehta YR, et al. Ranitidine-rifampin interaction. J Assoc Physicians India 1992; 40: 308–10

    PubMed  CAS  Google Scholar 

  36. Sahai J, Narang PK, Hawley-Foss N, et al. A phase I evaluation of concomitant rifabutin and didanosine in symptomatic HIV-infected patients. J Acquir Immune Defic Syndr 1995; 9: 274–9

    CAS  Google Scholar 

  37. Tousek J, Votruba R. Rifampin plus isoniazid, rifampicin plus PAS, and isoniazid plus PAS in the initial treatment of pulmonary tuberculosis: a controlled multicenter trial. Chemotherapy 1974; 20: 183–200

    PubMed  CAS  Google Scholar 

  38. Boman G, Lundgren P, Stjernstrom G. Mechanism of the inhibitory effect of PAS granules on the absorption of rifampicin: adsorption of rifampicin by an excipient, bentonite. Eur J Clin Pharmacol 1975; 8: 293–9

    PubMed  CAS  Google Scholar 

  39. Engelhard D, Stutman HR, Marks MI. Interaction of ketoconazole with rifampicin and isoniazid. N Engl J Med 1984; 311: 1681–3

    PubMed  CAS  Google Scholar 

  40. Mehta J, Gandhi IS, Sane SB, et al. Effect of clofazimine and dapsone on rifampin pharmacokinetics in multibacillary and paucibacillary leprosy cases. Indian J Leprosy 1985; 57: 297–310

    CAS  Google Scholar 

  41. Venkatesan K, Mathur A, Girdhar BK, et al. The effect of clofazimine on the pharmacokinetics of rifampin and dapsone in leprosy. J Antimicrob Chemother 1986; 18: 715–8

    PubMed  CAS  Google Scholar 

  42. Abadie-Kemmerly S, Pankey GA, Dalovisio JR, et al. Failure of ketoconazole treatment of Blastsmyces dermatitidis due to interaction of isoniazid and rifampin [letter]. Ann Intern Med 1988; 109: 844–5

    PubMed  CAS  Google Scholar 

  43. Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998; 54: 155–8

    PubMed  CAS  Google Scholar 

  44. Buniva G, Pagani V, Carozzi A. Bioavailability of rifampicin capsules. Int J Clin Pharmacol Ther Toxicol 1983; 21: 404–9

    PubMed  CAS  Google Scholar 

  45. Cavenaghi R. Rifampicin raw material characteristics and their effect on bioavailability. Bull Int Union Tuber Lung Dis 1989; 64: 36–7

    CAS  Google Scholar 

  46. Ellard GA, Ellard DR, Allen BW, et al. The bioavailability of isoniazid, rifampin, and pyrazinamide in two commercially available combined formulations designed for use in the short-course treatment of tuberculosis. Am Rev Respir Dis 1986; 133: 1076–80

    PubMed  CAS  Google Scholar 

  47. Acocella G, Nonis A, Perna G, et al. Comparative bioavailability of isoniazid, rifampin, and pyrazinamide administered in free combination and in a fixed triple formulation designed for daily use in antituberculosis chemotherapy. Am Rev Respir Dis 1988; 138: 886–90

    PubMed  CAS  Google Scholar 

  48. Sbarbaro J, Blomberg B, Chaulet P. Fixed-dose combination formulations for tuberculosis treatment. Int J Tuber Lung Dis 1999; 3 Suppl. 2: S286–7

    CAS  Google Scholar 

  49. Nahata MC, Morosco RS, Hippie TF. Effect of preparation method and storage on rifampin concentration in suspensions. Ann Pharmacother 1994; 28: 182–4

    PubMed  CAS  Google Scholar 

  50. Tam CM, Chan SL, Lam CW, et al. Bioavailability of Chinese rifapentine during a clinical trial in Hong Kong. Int J Tuber Lung Dis 1997; 1: 411–6

    CAS  Google Scholar 

  51. Gilljam M, Berning SE, Peloquin CA, et al. Therapeutic drug monitoring in patients with cystic fibrosis and mycobacterial disease. Eur Respir J 1999; 14: 347–51

    PubMed  CAS  Google Scholar 

  52. Peloquin CA, Nitta AT, Burman WJ, et al. Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother 1996; 30: 919–25

    PubMed  CAS  Google Scholar 

  53. Gordon SM, Horsburgh Jr CR, Peloquin CA, et al. Low serum levels of oral antimycobacterial agents in patients with disseminated Mycobacterium. avium complex disease. J Infect Dis 1993; 168: 1559–62

    PubMed  CAS  Google Scholar 

  54. Sahai J, Gallicano K, Swick L, et al. Reduced plasma concentrations of antituberculous drugs in patients with HIV infection. Ann Intern Med 1997; 127: 289–93

    PubMed  CAS  Google Scholar 

  55. Berning SE, Huitt GA, Iseman MD, et al. Malabsorption of antituberculosis medications by a patient with AIDS [letter]. N Engl J Med 1992; 327: 1817–8

    PubMed  CAS  Google Scholar 

  56. Patel KB, Belmonte R, Crowe HM. Drug malabsorption and resistant tuberculosis in HIV-infected patients [letter]. N Engl J Med 1995; 332: 336–7

    PubMed  CAS  Google Scholar 

  57. Ridzon R, Whitnet CG, McKenna MT, et al. Risk factors for rifampin mono-resistant tuberculosis. Am J Respir Crit Care Med 1998; 157: 1881–4

    PubMed  CAS  Google Scholar 

  58. Taylor J, Smith PJ. Does AIDS impair the absorption of antituberculosis agents? Int J Tuber Lung Dis 1998; 2: 670–5

    CAS  Google Scholar 

  59. Jaruratanasirikul S. The pharmacokinetics of oral rifampicin in AIDS patients. J Med Assoc Thai 1998; 81: 25–8

    PubMed  CAS  Google Scholar 

  60. Choudri SH, Hawken M, Gathau S, et al. Pharmacokinetics of antimycobacterial drugs in patients with tuberculosis, AIDS and diarrhea. Clin Infect Dis 1997; 25: 104–11

    Google Scholar 

  61. Stambaugh J, Narita M, Hollender E, et al. TB drug absorption study: serum rifampin level and CD4 counts in HIV-infected TB patients [abstract no. Y-12]. 99th General Meeting of the American Society for Microbiology; 1999 May 30–Jun 3; Chicago, IL

    Google Scholar 

  62. Peloquin CA, Berning SE, Huitt GA, et al. AIDS and TB drug absorption [letter]. Int J Tuber Lung Dis 1999; 3: 1133–4

    Google Scholar 

  63. Chaisson RE, Clermont HC, Holt EA, et al. Six-month supervised intermittent tuberculosis therapy in Haitian patients with and without HIV infection. Am J Respir Crit Care Med 1996; 154: 1034–8

    PubMed  CAS  Google Scholar 

  64. Shafer RW, Chirgwin KD, Glatt AE, et al. HIV prevalence, immunosuppression, and drug resistance in patients with tuberculosis in an area endemic for AIDS. AIDS 1991; 5: 399–405

    PubMed  CAS  Google Scholar 

  65. Jones BE, Young SMM, Antoniskis D, et al. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis 1993; 148: 1292–7

    PubMed  CAS  Google Scholar 

  66. Li RC, Nightingale S, Lewis RC, et al. Lack of effect of concomitant zidovudine on rifabutin pharmacokinetics in patients with AIDS-related complex. Antimicrob Agents Chemother 1996; 40: 1397–402

    PubMed  CAS  Google Scholar 

  67. Gatti G, Papa P, Torre D, et al. Population pharmacokinetics of rifabutin in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1998; 42: 2017–23

    PubMed  CAS  Google Scholar 

  68. Hafner R, Bethel J, Power M, et al. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob Agents Chemother 1998; 42: 631–9

    PubMed  CAS  Google Scholar 

  69. Gatti G, Di Biagio A, De Pascalis CR, et al. Pharmacokinetics of rifabutin in HIV-infected patients with or without wasting syndrome. J Clin Pharmacol 1999; 48: 704–11

    CAS  Google Scholar 

  70. Munsiff SS, Joseph S, Ebrahimzadeh A, et al. Rifampinmonoresistant tuberculosis in New York City, 1993–1994. Clin Infect Dis 1997; 25: 1465–7

    PubMed  CAS  Google Scholar 

  71. El-Sadr W, Permian DC, Matts JP, et al. Evaluation of an intensive intermittent-induction regimen and short course duration of treatment for HIV-related pulmonary tuberculosis. Clin Infect Dis 1998; 26: 1148–58

    PubMed  CAS  Google Scholar 

  72. Vernon A, Burman W, Benator D, et al. Relapse with rifamycin mono-resistant tuberculosis in HIV-infected patients treated with supervised once-weekly rifapentine and isoniazid. Lancet 1999; 353: 1843–7

    PubMed  CAS  Google Scholar 

  73. Tam CM, Chan SL, Kam KM, et al. Rifapentine and isoniazid in the continuation phase of a 6-month regimen. Interim report: no activity of isoniazid in the continuation phase. Int J Tuberc Lung Dis 2000; 4: 262–7

    PubMed  CAS  Google Scholar 

  74. Battaglia R, Pianezzola E, Salgarollo G, et al. Absorption, disposition and preliminary pathway of 14C-rifabutin in animals and man. J Antimicrob Chemother 1990; 26: 813–22

    PubMed  CAS  Google Scholar 

  75. Reith K, Keung A, Toren P, et al. Disposition and metabolism of 14C-rifapentine in healthy volunteers. Drug Metab Dispos 1998; 26: 732–8

    PubMed  CAS  Google Scholar 

  76. Li AP, Reith MK, Rasmussen A, et al. Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in cytochrome P450 induction potential of xenobiotics: evaluation of rifampin, rifapentine, and rifabutin. Chem Biol Interact 1997; 107: 17–30

    PubMed  CAS  Google Scholar 

  77. Indinavir pharmacokinetic study group. Indinavir (MK 639) drug interactions studies [abstract no. MoBl74]. 11th International Conference on AIDS; 1996 Jul 7–12; Vancouver, 18

    Google Scholar 

  78. Temple ME, Narata MC. Rifapentine: its role in the treatment of tuberculosis. Ann Pharmacother 1999; 33: 1203–10

    PubMed  CAS  Google Scholar 

  79. Veldkcamp AI, Hoetelmans RM, Beijnen JH, et al. Ritonavir enables combined therapy with rifampin and saquinavir. Clin Infect Dis 1999; 29: 1586

    Google Scholar 

  80. Brogden RN, Fitton A. Rifabutin: a review of its antimicrobial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1994; 47: 983–1009

    PubMed  CAS  Google Scholar 

  81. Strolin Benedetti M, Dostert P. Induction and autoinduction properties of rifamycin derivatives: a review of animal and human studies. Environ Health Perspect 1994; 102 Suppl. 9: 101–5

    PubMed  CAS  Google Scholar 

  82. Strolin Benedetti M, Efthymiopoulos C, Sassella D, et al. Autoinduction of rifabutin metabolism in man. Xenobiotica 1990; 20: 1113–9

    PubMed  CAS  Google Scholar 

  83. Cocchiara G, Strolin Benedetti M, Vicario GP, et al. Urinary metabolites of rifabutin, a new antimycobacterial agent, in human volunteers. Xenobiotica 1989; 19: 769–80

    PubMed  CAS  Google Scholar 

  84. Utkin I, Koudriakova T, Thompson T, et al. Isolation and identification of major urinary metabolites of rifabutin in rats and humans. Drug Metab Dispos 1997; 25: 963–9

    PubMed  CAS  Google Scholar 

  85. Iatsimirskaia E, Tulebaev S, Storozhuk E, et al. Metabolism of rifabutin in human enterocyte and liver microsomes: kinetic parameters, identification of enzyme systems, and drug interactions with macrolides and antifungal agents. Clin Pharmacol Ther 1997; 61: 554–62

    PubMed  CAS  Google Scholar 

  86. Trapnell CB, Jamis-Dow C, Klecker RW, et al. Metabolism of rifabutin and its 25-desacetyl metabolite, LM565, by human liver microsomes and recombinant human cytochrome P-450: relevance to clinical interaction with fluconazole. Antimicrob Agents Chemother 1997; 41: 924–6

    PubMed  CAS  Google Scholar 

  87. Jamis-Dow CA, Katki AG, Collins JM, et al. Rifampin and rifabutin and their metabolism by human liver esterases. Xenobiotica 1997; 27: 1015–24

    PubMed  CAS  Google Scholar 

  88. Starkel P, Sempoux C, Van Den Berge V, et al. CYP 3Aproteins are expressed on human neutrophils and lymphocytes but are not induced by rifampin. Life Sci 1999; 64: 643–53

    PubMed  CAS  Google Scholar 

  89. Reinach B, de Souse G, Dostert P, et al. Comparative effects of rifabutin and rifampicin on cytochromes P45O and UDP-glucuronosyl-transferases expression in fresh and cryopreserved human hepatocytes. Chem Biol Interact 1999; 121: 37–48

    PubMed  CAS  Google Scholar 

  90. Gharaibeh MN, Gillen LP, Osborne B, et al. Effect of multiple doses of rifampin on the [14C-N-methyl]erythromycin breath test in healthy male volunteers. J Clin Pharmacol 1998; 38: 492–5

    PubMed  CAS  Google Scholar 

  91. Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interaction between ritonavir and indinavir in healthy volunteers. Antimicrob Agents Chemother 1998; 42: 2784–91

    PubMed  CAS  Google Scholar 

  92. Venkatesan K. Pharmacokinetic drug interactions with rifampin. Clin Pharmacokinet 1992; 22: 47–65

    PubMed  CAS  Google Scholar 

  93. Ohnhaus EE, Brockmeyer N, Dylewicz P, et al. The effect of antipyrine and rifampin on the metabolism of diazepam. Clin Pharmacol Ther 1987; 42: 148–56

    PubMed  CAS  Google Scholar 

  94. Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9: 551–9

    PubMed  CAS  Google Scholar 

  95. Bachmann KA, Jauregui L. Use of single sample clearance estimates of cytochrome P450 substrates to characterize human hepatic CYP status in vivo. Xenobiotica 1993; 23: 307–15

    PubMed  CAS  Google Scholar 

  96. Caraco Y, Sheller J, Wood AJ. Pharmacogenetic determination of codeine induction by rifampin: the impact on codeine’s respiratory, psychomotor and miotic effects. J Pharmacol Exp Ther 1997; 281: 330–6

    PubMed  CAS  Google Scholar 

  97. Gallicano K, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and animation pathways by rifampin in HIV infected patients. Br J Clin Pharmacol 1999; 48: 168–79

    PubMed  CAS  Google Scholar 

  98. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53

    PubMed  CAS  Google Scholar 

  99. Nolan SR, Self TH, Norwood JM. Interaction between rifampin and levothyroxine. South Med J 1999; 92: 529–31

    PubMed  CAS  Google Scholar 

  100. Strayhorn VA, Baciewicz AM, Self TH. Update on rifampin drug interactions, III. Arch Intern Med 1997; 157: 2453–8

    PubMed  CAS  Google Scholar 

  101. Burman WJ, Gallicano K, Peloquin C. Therapeutic implications of drug interactions in the treatment of HIV-related tuberculosis. Clin Infect Dis 1999; 28: 419–30

    PubMed  CAS  Google Scholar 

  102. Cato A, Cavanaugh J, Shi H, et al. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998; 63: 414–21

    PubMed  CAS  Google Scholar 

  103. Kerr B, Lee C, Yuen G, et al. Overview of in-vitro and in-vivo drug interaction studies of nelfinavir mesylate, a new HIV-1 protease inhibitor [abstract no. 373]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22–26; Washington, DC, 133

    Google Scholar 

  104. Sadler B, Gillotin C, Chittick GE, et al. Pharmacokinetic drug interactions with amprenavir [abstract no. 12389]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva, 91

    Google Scholar 

  105. Apseloff G, Foulds G, LaBoy-Garol L, et al. Comparison of azithromycin and clarithromycin in their interactions with rifabutin in healthy volunteers. J Clin Pharmacol 1998; 38: 830–5

    PubMed  CAS  Google Scholar 

  106. Kerr BM, Daniels R, Clendeninn N. Pharmacokinetic interaction of nelfinavir with half-dose rifabutin [abstract]. Can J Infect Dis 1999; 10 Suppl. B: 21B

    Google Scholar 

  107. Gallicano K, Khaliq Y, Seguin I, et al. A pharmacokinetic study of intermittent rifabutin dosing with a combination of ritonavir and saquinavir in HIV patients [abstract no. 91]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 30–Feb 2; San Francisco, 92

    Google Scholar 

  108. Centers for Disease Control and Prevention. Prevention and treatment of tuberculosis among patients infected with human immunodeficiency virus: principles of therapy and revised recommendations. MMWR Morb Mortal Wkly Rep 1998; 47(No. RR-20): 1–58

    Google Scholar 

  109. Centers for Disease Control and Prevention. Updated guidelines for the use of rifabutin or rifampin for the treatment and prevention of tuberculosis among HIV-infected patients taking protease inhibitors or non-nucleoside reverse transcriptase inhibitors. MMWR Morb Mortal Wkly Rep 2000; 49: 185–9

    Google Scholar 

  110. Yamada T, Nagata A, Ono Y, et al. Alteration of ribosomes and RNA polymerase in drug-resistant clinical isolates of My cobacterium tuberculosis. Antimicrob Agents Chemother 1985; 27: 921–4

    PubMed  CAS  Google Scholar 

  111. Dickinson JM, Jackett PS, Mitchison DA. The effect of pulsed exposures to rifampin on the uptake of uridine-14C by Mycobacterium tuberculosis. Am Rev Respir Dis 1972; 105: 519–27

    PubMed  CAS  Google Scholar 

  112. Dickinson JM, Mitchison DA. Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am Rev Respir Dis 1981; 123: 367–81

    PubMed  CAS  Google Scholar 

  113. Mitchison DA. Understanding the chemotherapy of tuberculosis: current problems. J Antimicrob Chemother 1992; 29: 477–93

    PubMed  CAS  Google Scholar 

  114. Jindani A, Baer VR, Edwards EA, et al. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis 1980; 121: 939–49

    PubMed  CAS  Google Scholar 

  115. Long MW, Snider DEJ, Farer LS. U.S. Public Health Service trial of three rifampin-isoniazid regimens in treatment of pulmonary tuberculosis. Am Rev Respir Dis 1979; 119: 879–94

    PubMed  CAS  Google Scholar 

  116. Suo J, Chang CE, Lin TP, et al. Minimal inhibitory concentrations of isoniazid, rifampin, ethambutol, and streptomycin against Mycobacterium. tuberculosis strains isolates before treatment of patients in Taiwan. Am Rev Respir Dis 1988; 138: 999–1001

    PubMed  CAS  Google Scholar 

  117. Chen CH, Shih JF, Lindhom-Levy PJ, et al. Minimal inhibitory concentrations of rifabutin, ciprofloxacin, and ofloxacin against Mycobacterium. tuberculosis isolated before treatment of patients in Taiwan. Am Rev Respir Dis 1989; 140: 987–9

    PubMed  CAS  Google Scholar 

  118. Dickinson JM, Mitchison DA. In vitro properties of rifapentine (MDL473) relevant to its use in intermittent chemotherapy of tuberculosis. Tubercle 1987; 68: 113–8

    PubMed  CAS  Google Scholar 

  119. Heifets LB, Lindhom-Levy P, Flory MA. Bactericidal activity in vitro of various rifamycins against Mycobacterium. avium. and Mycobacterium. tuberculosis. Am Rev Respir Dis 1990; 141: 626–30

    PubMed  CAS  Google Scholar 

  120. Boman G, Ringberger VA. Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol 1974; 7: 369–73

    PubMed  CAS  Google Scholar 

  121. Hand WL, Corwin RW, Steinberg TH, et al. Uptake of antibiotics by human alveolar macrophages. Am Rev Respir Dis 1984; 129: 933–7

    PubMed  CAS  Google Scholar 

  122. Mor N, Simon B, Mezo N, et al. Comparison of activities of rifapentine, and rifampin against Mycobacterium. tuberculosis residing in human macrophages. Antimicrob Agents Chemother 1995; 39: 2073–7

    PubMed  CAS  Google Scholar 

  123. Van der Auwera P, Matsumoto T, Husson M. Intraphagocytic penetration of antibiotics. J Antimicrob Chemother 1988; 22: 185–92

    PubMed  Google Scholar 

  124. Pascual A, Tsukayama D, Kovarik J, et al. Uptake and activity of rifapentine in human peritoneal macrophages and polymorphonuclear leukocytes. Eur J Clin Microbiol 1987; 6: 152–7

    PubMed  CAS  Google Scholar 

  125. Dhillon J, Mitchison DA. Activity in vitro of rifabutin, FCE 22807, rifapentine, and rifampin against Mycobacterium microti and M. tuberculosis and their penetration into mouse peritoneal macrophages. Am Rev Respir Dis 1992; 145: 212–4

    PubMed  CAS  Google Scholar 

  126. Lee CN, Heifets LB. Determination of minimal inhibitory concentrations of antituberculosis drugs by radiometric and conventional methods. Am Rev Respir Dis 1987; 136: 349–52

    PubMed  CAS  Google Scholar 

  127. Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council Tuberculosis Units, 1946–1986, with relevant subsequent publications. Int J Tuber Lung Dis 1999; 3 Suppl. 2: S231–79

    CAS  Google Scholar 

  128. Ramakrishnan CV, Devadatta S, Evans C, et al. A four-year follow-up of patients with quiescent pulmonary tuberculosis at the end of a year of chemotherapy with twice-weekly isoniazid plus streptomycin or daily isoniazid plus PAS. Tubercle 1969; 50: 115–24

    PubMed  CAS  Google Scholar 

  129. Merry C, Barry MG, Mulcahy F, et al. Saquinavir pharmacokinetics alone and in combination with nelfinavir in HIV-infected patients. AIDS 1997; 11: F117–20

    PubMed  CAS  Google Scholar 

  130. Molla A, Vasavanonda S, Kumar G, et al. Human serum attenuates the activity of protease inhibitors toward wild-type and mutant human immunodeficiency virus. Virology 1998; 250: 255–62

    PubMed  CAS  Google Scholar 

  131. Gieschke R, Fotteler B, Buss N, et al. Relationships between exposure to saquinavir monotherapy and antiviral response in HIV-positive patients. Clin Pharmacokinet 1999; 37: 75–86

    PubMed  CAS  Google Scholar 

  132. Fischl MA, Richman DD, Flexner C, et al. Phase MI study of the toxicity, pharmacokinetics, and activity of the HIV protease inhibitor SC-52151. J Acquir Immune Defic Syndr Hum Retrovirol 1997; 15: 28–34

    PubMed  CAS  Google Scholar 

  133. Lazdins JK, Mestan J, Goutte G, et al. In vitro effect of alphalacid glycoprotein on the anti-human immunodeficiency virus (HIV) activity of the protease inhibitor CGP 61755: a comparative study with other relevant HIV protease inhibitors. J Infect Dis 1997; 175: 1063–70

    PubMed  CAS  Google Scholar 

  134. Gurumurthy P, Rahman F, Narayana ASL, et al. Salivary levels of isoniazid and rifampicin in tuberculosis patients. Tubercle 1990; 71: 29–33

    PubMed  CAS  Google Scholar 

  135. Dhillon J, Dickinson JM, Guy JA, et al. Activity of two long-acting rifamycins, rifapentine and FCE 22807, in experimental murine tuberculosis. Tuber Lung Dis 1992; 73: 116–23

    PubMed  CAS  Google Scholar 

  136. Daniel N, Lounis N, Ji B, et al. Antituberculosis activity of once-weekly rifapentine-containing regimens in mice: long term effectiveness of 6- and 8-month treatment regimens. Am J Respir Crit Care Med 2000; 161: 1572–7

    PubMed  CAS  Google Scholar 

  137. Gonzalez-Montaner LJ, Natal S, Yonchaiyud P, et al. Rifabutin for the treatment of newly-diagnosed pulmonary tuberculosis: a multinational, randomized, comparative study versus rifampicin. Tuber Lung Dis 1994; 75: 341–7

    PubMed  CAS  Google Scholar 

  138. Mitchison DA. Development of rifapentine: the way ahead. Int J Tuber Lung Dis 1998; 2: 612–5

    CAS  Google Scholar 

  139. Burman WJ. The value of in vitro drug activity and pharmacokinetics in predicting the effectiveness of antimycobacterial therapy: a critical review. Am J Med Sci 1997; 313: 355–63

    PubMed  CAS  Google Scholar 

  140. Newman R, Foster B, Murray FJ, et al. Rifampin in initial treatment of pulmonary tuberculosis. Am Rev Respir Dis 1971; 103: 461–76

    PubMed  CAS  Google Scholar 

  141. Martinez E, Collazos J, Mayo J. Hypersensitivity reactions to rifampin: pathogenetic mechanisms, clinical manifestations, management strategies, and review of the anaphylactic-like reactions. Medicine 1999; 78: 361–9

    PubMed  CAS  Google Scholar 

  142. Blajchman MA, Lowry RC, Petit JE, et al. Rifampin-induced immune thrombocytopenia. BMJ 1970; 3: 24–6

    PubMed  CAS  Google Scholar 

  143. Grosset J, Leventis S. Adverse effects of rifampin. Rev Infect Dis 1983; 5 Suppl. 3: S440–5

    PubMed  CAS  Google Scholar 

  144. Gupta A, Sakhuja V, Gupta KL, et al. Intravascular hemolysis and acute renal failure following intermittent rifampin therapy. Int J Lepr Other Myobact Dis 1992; 60: 185–8

    CAS  Google Scholar 

  145. Levine M, Collin K, Kassen BO. Acute hemolysis and renal failure following discontinuous use of rifampin. DICP 1991; 25: 743–4

    PubMed  CAS  Google Scholar 

  146. Cooperative Tuberculosis Chemotherapy Study in Poland. A comparative study of daily followed by twice or once weekly regimens of ethambutol and rifampicin in retreatment of patients with pulmonary tuberculosis. Tubercle 1975; 56: 1–25

    Google Scholar 

  147. Hong Kong Tuberculosis Treatment Services/ Brompton Hospital/ British Medical Research Council. A controlled trial of daily and intermittent rifampicin plus ethambutol in the retreatment of patients with pulmonary tuberculosis: results up to 30 months. Tubercle 1975; 56: 179–89

    Google Scholar 

  148. Hadfield JW. Rifampin-induced thrombocytopenia. Postgrad Med J 1980; 56: 59–60

    PubMed  CAS  Google Scholar 

  149. Burnette PK, Ameer B, Hoang V, et al. Rifampin-associated thrombocytopenia secondary to poor compliance. DICP 1989; 23: 382–4

    PubMed  CAS  Google Scholar 

  150. Girling DJ. Adverse reaction to rifampicin in antituberculosis regimens. J Antimicrob Chemother 1977; 3: 115–32

    PubMed  CAS  Google Scholar 

  151. Shafran SD, Singer J, Zarowny DP, et al. A comparison of two regimens for the treatment of Mycobacterium. avium. complex bacteremia in AIDS: rifabutin, ethambutol, and clarithromycin versus rifampin, ethambutol, clofazimine, and ciprofloxacin. N Engl J Med 1996; 335: 377–83

    PubMed  CAS  Google Scholar 

  152. Griffith DE, Brown BA, Wallace Jr RJ. Varying dosages of rifabutin affect white blood cell and platelet counts in human immunodeficiency virus-negative patients who are receiving multidrug regimens for pulmonary Mycobacterium. avium. complex disease. Clin Infect Dis 1996; 23: 1321–2

    PubMed  CAS  Google Scholar 

  153. Benson CA, Williams PL, Cohn DL, et al. Clarithromycin or rifabutin alone or in combination for primary prophylaxis of Mycobacterium. avium. complex disease in patients with AIDS: a randomized, double-blind, placebo-controlled trial. J Infect Dis 2000; 181: 1289–97

    PubMed  CAS  Google Scholar 

  154. Smith JF, Flanigan TP. Unusual pigmentation in patients with AIDS who are receiving rifabutin for bacteremia due to Mycobacterium. avium/Mycobacterium. intracellulare complex. Clin Infect Dis 1995; 21: 1515–6

    PubMed  CAS  Google Scholar 

  155. Smith JA, Mueller BU, Nussenblatt RB, et al. Corneal endothelial deposits in children positive for human immunodeficiency virus receiving rifabutin prophylaxis for Mycobacterium. avium. complex bacteremia. Am J Ophthalmol 1999; 127: 164–9

    PubMed  CAS  Google Scholar 

  156. Torseth J, Bhatia G, Harkonen S, et al. Evaluation of the antiviral effect of rifabutin in AIDS-related complex. J Infect Dis 1989; 159: 1115–8

    PubMed  CAS  Google Scholar 

  157. Griffith DE, Brown BA, Girard WM, et al. Adverse events associated with high-dose rifabutin in macrolide-containing regimens for the treatment of Mycobacterium. avium. lung disease. Clin Infect Dis 1995; 21: 594–8

    PubMed  CAS  Google Scholar 

  158. Sun E, Heath-Chiozzi M, Cameron DW, et al. Concurrent ritonavir and rifabutin increases risk of rifabutin-associated adverse events [abstract no. MoB171]. 11th International Conference on AIDS; 1996 Jul 7–12; Vancouver, 18

    Google Scholar 

  159. Peloquin CA. Using therapeutic drug monitoring to dose the antimycobacterial drugs. Clin Chest Med 1997; 18: 79–87

    PubMed  CAS  Google Scholar 

  160. Pablos-Mendez A, Raviglione MC, Laszlo A, et al. Global surveillance for antituberculosis-drug resistance, 1994–1997. N Engl J Med 1998; 338: 1641–9

    PubMed  CAS  Google Scholar 

  161. Espinal MA, Kim SJ, Suarez PG, et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA 2000; 283: 2537–45

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Burman would like to thank the Centers for Disease Control and Prevention (Tuberculosis Trials Consortium) in Atlanta, USA for their support. Dr Gallicano would like to acknowledge the support of the AIDS Program, Committee of the Ontario Ministry of Health and the Canadian HIV Trials Network (CTN 117) and Dr Peloquin would like to acknowledge support from the NIAID (grant AI37845).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Burman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burman, W.J., Gallicano, K. & Peloquin, C. Comparative Pharmacokinetics and Pharmacodynamics of the Rifamycin Antibacterials. Clin Pharmacokinet 40, 327–341 (2001). https://doi.org/10.2165/00003088-200140050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140050-00002

Keywords

Navigation