Skip to main content

Pharmacodynamics of Fluoroquinolones

  • Protocol
  • First Online:
Antibiotic Pharmacodynamics

Abstract

Fluoroquinolones are a ubiquitous class of broad-spectrum antibacterials used to treat a multitude of bacterial infections in both the inpatient and outpatient settings. Pharmacodynamic research has played an integral role in the drug development and approval process for fluoroquinolones. There exists a wealth of fluoroquinolone pharmacodynamic literature and, despite considerable heterogeneity among studies, the results are almost universally the same: f-AUC24/MIC ratio is most predictive of microbiologic and clinical efficacy; >30 for gram-positive and >125 for gram-negative organisms. However, rising rates of fluoroquinolone resistance, particularly among gram-negative pathogens, may challenge these established pharmacodynamic indices. This chapter discusses the pharmacodynamics of fluoroquinolones with particular focus on the commonly used agents in current clinical practice: ciprofloxacin, levofloxacin, and moxifloxacin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliphant CM, Green GM (2002) Quinolones: a comprehensive review. Am Fam Physician 65(3):455–464

    PubMed  Google Scholar 

  2. Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B et al (1998) Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 279(2):125–129

    Article  CAS  PubMed  Google Scholar 

  3. Rotschafer JC, Ullman MA, Sullivan CJ (2011) Optimal use of fluoroquinolones in the intensive care unit setting. Crit Care Clin 27(1):95–106

    Article  CAS  PubMed  Google Scholar 

  4. Wright DH, Brown GH, Peterson ML, Rotschafer JC (2000) Application of fluoroquinolone pharmacodynamics. J Antimicrob Chemother 46(5):669–683

    Article  CAS  PubMed  Google Scholar 

  5. Brighty K, Gootz T (2000) Chemistry and mechanism of action of the quinolone antibacterials. In: Andriole VT (ed) The quinolones, 3rd edn. Academic, San Diego, pp 33–97

    Chapter  Google Scholar 

  6. Lubasch A, Keller I, Borner K, Koeppe P, Lode H (2000) Comparative pharmacokinetics of ciprofloxacin, gatifloxacin, grepafloxacin, levofloxacin, trovafloxacin, and moxifloxacin after single oral administration in healthy volunteers. Antimicrob Agents Chemother 44(10):2600–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turnidge J (1999) Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs 58(Suppl 2):29–36

    Article  CAS  PubMed  Google Scholar 

  8. Walker RC (1999) The fluoroquinolones. Mayo Clin Proc 74(10):1030–1037

    Article  CAS  PubMed  Google Scholar 

  9. Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61(3):377–392

    Google Scholar 

  10. Hawkey PM (2003) Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51(Suppl 1):29–35

    Article  CAS  PubMed  Google Scholar 

  11. Bergan T, Thorsteinsson SB, Solberg R, Bjornskau L, Kolstad IM, Johnsen S (1987) Pharmacokinetics of ciprofloxacin: intravenous and increasing oral doses. Am J Med 82(4A):97–102

    CAS  PubMed  Google Scholar 

  12. Sullivan JT, Woodruff M, Lettieri J, Agarwal V, Krol GJ, Leese PT et al (1999) Pharmacokinetics of a once-daily oral dose of moxifloxacin (bay 12-8039), a new enantiomerically pure 8-methoxy quinolone. Antimicrob Agents Chemother 43(11):2793–2797

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stass H, Kubitza D, Schuhly U (2001) Pharmacokinetics, safety and tolerability of moxifloxacin, a novel 8-methoxyfluoroquinolone, after repeated oral administration. Clin Pharmacokinet 40(Suppl 1):1–9

    Article  CAS  PubMed  Google Scholar 

  14. Stass H, Kubitza D (2001) Effects of iron supplements on the oral bioavailability of moxifloxacin, a novel 8-methoxyfluoroquinolone, in humans. Clin Pharmacokinet 40(Suppl 1):57–62

    Article  CAS  PubMed  Google Scholar 

  15. Lettieri J, Vargas R, Agarwal V, Liu P (2001) Effect of food on the pharmacokinetics of a single oral dose of moxifloxacin 400 mg in healthy male volunteers. Clin Pharmacokinet 40(Suppl 1):19–25

    Article  CAS  PubMed  Google Scholar 

  16. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) Oral bioavailability of trovafloxacin with and without food in healthy volunteers. J Antimicrob Chemother 39(Suppl B):87–92

    Article  CAS  PubMed  Google Scholar 

  17. Stass H, Bottcher MF, Ochmann K (2001) Evaluation of the influence of antacids and h2 antagonists on the absorption of moxifloxacin after oral administration of a 400 mg dose to healthy volunteers. Clin Pharmacokinet 40(Suppl 1):39–48

    Article  CAS  PubMed  Google Scholar 

  18. Stass H, Wandel C, Delesen H, Moller JG (2001) Effect of calcium supplements on the oral bioavailability of moxifloxacin in healthy male volunteers. Clin Pharmacokinet 40(Suppl 1):27–32

    Article  CAS  PubMed  Google Scholar 

  19. Stass H, Kubitza D (2001) Effects of dairy products on the oral bioavailability of moxifloxacin, a novel 8-methoxyfluoroquinolone, in healthy volunteers. Clin Pharmacokinet 40(Suppl 1):33–38

    Article  CAS  PubMed  Google Scholar 

  20. Aminimanizani A, Beringer P, Jelliffe R (2001) Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials. Clin Pharmacokinet 40(3):169–187

    Article  CAS  PubMed  Google Scholar 

  21. Vance-Bryan K, Guay DR, Rotschafer JC (1990) Clinical pharmacokinetics of ciprofloxacin. Clin Pharmacokinet 19(6):434–461

    Article  CAS  PubMed  Google Scholar 

  22. Boselli E, Breilh D, Rimmele T, Djabarouti S, Saux MC, Chassard D et al (2005) Pharmacokinetics and intrapulmonary diffusion of levofloxacin in critically ill patients with severe community-acquired pneumonia. Crit Care Med 33(1):104–109

    Article  CAS  PubMed  Google Scholar 

  23. Rink AD, Stass H, Delesen H, Kubitza D, Vestweber KH (2008) Pharmacokinetics and tissue penetration of moxifloxacin in intervention therapy for intra-abdominal abscess. Clin Drug Investig 28(2):71–79

    Article  CAS  PubMed  Google Scholar 

  24. Ober MC, Hoppe-Tichy T, Koninger J, Schunter O, Sonntag HG, Weigand MA et al (2009) Tissue penetration of moxifloxacin into human gallbladder wall in patients with biliary tract infections. J Antimicrob Chemother 64(5):1091–1095

    Article  CAS  PubMed  Google Scholar 

  25. Krasemann C, Meyer J, Tillotson G (2001) Evaluation of the clinical microbiology profile of moxifloxacin. Clin Infect Dis 32(Suppl 1):S51–S63

    Article  CAS  PubMed  Google Scholar 

  26. Gotfried MH, Danziger LH, Rodvold KA (2001) Steady-state plasma and intrapulmonary concentrations of levofloxacin and ciprofloxacin in healthy adult subjects. Chest 119(4):1114–1122

    Article  CAS  PubMed  Google Scholar 

  27. Chatzika K, Manika K, Kontou P, Pitsiou G, Papakosta D, Zarogoulidis K et al (2014) Moxifloxacin pharmacokinetics and pleural fluid penetration in patients with pleural effusion. Antimicrob Agents Chemother 58(3):1315–1319

    Google Scholar 

  28. Nau R, Sorgel F, Eiffert H (2010) Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 23(4):858–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clinical and Laboratory Standards Institute (2013) M100-S23. Performance standards for antimicrobial susceptibility testing: 23rd informational supplement. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  30. Barth J, Jager D, Mundkowski R, Drewelow B, Welte T, Burkhardt O (2008) Single- and multiple-dose pharmacokinetics of intravenous moxifloxacin in patients with severe hepatic impairment. J Antimicrob Chemother 62(3):575–578

    Article  CAS  PubMed  Google Scholar 

  31. Ambrose PG, Bhavnani SM, Owens RC Jr (2003) Clinical pharmacodynamics of quinolones. Infect Dis Clin North Am 17(3):529–543

    Article  PubMed  Google Scholar 

  32. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37(5):1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schentag JJ, Meagher AK, Forrest A (2003) Fluoroquinolone AUIC break points and the link to bacterial killing rates. Part 2: human trials. Ann Pharmacother 37(10):1478–1488

    Google Scholar 

  34. Blaser J, Stone BB, Groner MC, Zinner SH (1987) Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 31(7):1054–1060

    Google Scholar 

  35. Dudley MN, Blaser J, Gilbert D, Mayer KH, Zinner SH (1991) Combination therapy with ciprofloxacin plus azlocillin against Pseudomonas aeruginosa: effect of simultaneous versus staggered administration in an in vitro model of infection. J Infect Dis 164(3):499–506

    Google Scholar 

  36. Madaras-Kelly KJ, Ostergaard BE, Hovde LB, Rotschafer JC (1996) Twenty-four-hour area under the concentration-time curve/MIC ratio as a generic predictor of fluoroquinolone antimicrobial effect by using three strains of P seudomonas aeruginosa and an in vitro pharmacodynamic model. Antimicrob Agents Chemother 40(3):627–632

    Google Scholar 

  37. Odenholt I, Cars O (2006) Pharmacodynamics of moxifloxacin and levofloxacin against Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli: simulation of human plasma concentrations after intravenous dosage in an in vitro kinetic model. J Antimicrob Chemother 58(5):960–965

    Google Scholar 

  38. Singh R, Ledesma KR, Chang KT, Hou JG, Prince RA, Tam VH (2009) Pharmacodynamics of moxifloxacin against a high inoculum of Escherichia coli in an in vitro infection model. J Antimicrob Chemother 64(3):556–562

    Google Scholar 

  39. Firsov AA, Vostrov SN, Shevchenko AA, Cornaglia G (1997) Parameters of bacterial killing and regrowth kinetics and antimicrobial effect examined in terms of area under the concentration-time curve relationships: action of ciprofloxacin against Escherichia coli in an in vitro dynamic model. Antimicrob Agents Chemother 41(6):1281–1287

    Google Scholar 

  40. Firsov AA, Lubenko IY, Vostrov SN, Kononenko OV, Zinner SH, Portnoy YA (2000) Comparative pharmacodynamics of moxifloxacin and levofloxacin in an in vitro dynamic model: prediction of the equivalent AUC/MIC breakpoints and equiefficient doses. J Antimicrob Chemother 46(5):725–732

    Google Scholar 

  41. Firsov AA, Zinner SH (2001) Use of modeling techniques to aid in antibiotic selection. Curr Infect Dis Rep 3(1):35–43

    Article  PubMed  Google Scholar 

  42. Firsov AA, Zinner SH, Vostrov SN, Portnoy YA, Lubenko IY (2002) AUC/MIC relationships to different endpoints of the antimicrobial effect: multiple-dose in vitro simulations with moxifloxacin and levofloxacin. J Antimicrob Chemother 50(4):533–539

    Google Scholar 

  43. Firsov AA, Vasilov RG, Vostrov SN, Kononenko OV, Lubenko IY, Zinner SH (1999) Prediction of the antimicrobial effects of trovafloxacin and ciprofloxacin on staphylococci using an in-vitro dynamic model. J Antimicrob Chemother 43(4):483–490

    Article  CAS  PubMed  Google Scholar 

  44. Firsov AA, Zinner SH, Lubenko IY, Portnoy YA, Vostrov SN (2002) Simulated in vitro quinolone pharmacodynamics at clinically achievable AUC/MIC ratios: advantage of I E over other integral parameters. Chemotherapy 48(6):275–279

    Google Scholar 

  45. Schentag JJ, Meagher AK, Forrest A (2003) Fluoroquinolone AUIC break points and the link to bacterial killing rates. Part 1: in vitro and animal models. Ann Pharmacother 37(9):1287–1298

    Google Scholar 

  46. Olofsson SK, Marcusson LL, Stromback A, Hughes D, Cars O (2007) Dose-related selection of fluoroquinolone-resistant Escherichia coli. J Antimicrob Chemother 60(4):795–801

    Article  CAS  PubMed  Google Scholar 

  47. Leggett JE, Ebert S, Fantin B, Craig WA (1990) Comparative dose-effect relations at several dosing intervals for beta-lactam, aminoglycoside and quinolone antibiotics against gram-negative bacilli in murine thigh-infection and pneumonitis models. Scand J Infect Dis Suppl 74:179–184

    CAS  PubMed  Google Scholar 

  48. Drusano GL, Johnson DE, Rosen M, Standiford HC (1993) Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of pseudomonas sepsis. Antimicrob Agents Chemother 37(3):483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10, quiz 11–12

    Article  CAS  PubMed  Google Scholar 

  50. Louie A, Fregeau C, Liu W, Kulawy R, Drusano GL (2009) Pharmacodynamics of levofloxacin in a murine pneumonia model of Pseudomonas aeruginosa infection: determination of epithelial lining fluid targets. Antimicrob Agents Chemother 53(8):3325–3330

    Google Scholar 

  51. Peloquin CA, Cumbo TJ, Nix DE, Sands MF, Schentag JJ (1989) Evaluation of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Impact of plasma concentrations, organism, minimum inhibitory concentration, and clinical condition on bacterial eradication. Arch Intern Med 149(10):2269–2273

    Article  CAS  PubMed  Google Scholar 

  52. Thomas JK, Forrest A, Bhavnani SM, Hyatt JM, Cheng A, Ballow CH et al (1998) Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 42(3):521–527

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zelenitsky SA, Ariano RE (2010) Support for higher ciprofloxacin AUC24/MIC targets in treating enterobacteriaceae bloodstream infection. J Antimicrob Chemother 65(8):1725–1732

    Google Scholar 

  54. Zelenitsky S, Ariano R, Harding G, Forrest A (2005) Evaluating ciprofloxacin dosing for Pseudomonas aeruginosa infection by using clinical outcome-based Monte Carlo simulations. Antimicrob Agents Chemother 49(10):4009–4014

    Google Scholar 

  55. Conil JM, Georges B, de Lussy A, Khachman D, Seguin T, Ruiz S et al (2008) Ciprofloxacin use in critically ill patients: pharmacokinetic and pharmacodynamic approaches. Int J Antimicrob Agents 32(6):505–510

    Article  CAS  PubMed  Google Scholar 

  56. Saengsuwan P, Jaruratanasirikul S, Jullangkoon M, Aeinlang N (2010) Comparative study of pharmacokinetics/ pharmacodynamics of ciprofloxacin between 400 mg intravenously every 8 h and 400 mg intravenously every 12 h in patients with gram negative bacilli bacteremia. J Med Assoc Thai 93(7):784–788

    PubMed  Google Scholar 

  57. Haeseker M, Stolk L, Nieman F, Hoebe C, Neef C, Bruggeman C et al (2013) The ciprofloxacin target AUC: MIC ratio is not reached in hospitalized patients with the recommended dosing regimens. Br J Clin Pharmacol 75(1):180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF (2001) Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 45(10):2793–2797

    Google Scholar 

  59. Lacy MK, Lu W, Xu X, Tessier PR, Nicolau DP, Quintiliani R et al (1999) Pharmacodynamic comparisons of levofloxacin, ciprofloxacin, and ampicillin against Streptococcus pneumoniae in an in vitro model of infection. Antimicrob Agents Chemother 43(3):672–677

    Google Scholar 

  60. Bedos JP, Azoulay-Dupuis E, Moine P, Muffat-Joly M, Veber B, Pocidalo JJ et al (1998) Pharmacodynamic activities of ciprofloxacin and sparfloxacin in a murine pneumococcal pneumonia model: relevance for drug efficacy. J Pharmacol Exp Ther 286(1):29–35

    CAS  PubMed  Google Scholar 

  61. Lister PD, Sanders CC (1999) Pharmacodynamics of levofloxacin and ciprofloxacin against Streptococcus pneumoniae. J Antimicrob Chemother 43(1):79–86

    Google Scholar 

  62. MacGowan AP, Rogers CA, Holt HA, Bowker KE (2003) Activities of moxifloxacin against, and emergence of resistance in, Streptococcus pneumoniae and Pseudomonas aeruginosa in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 47(3):1088–1095

    Google Scholar 

  63. Dalhoff A (2012) Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis 2012:976273

    PubMed  PubMed Central  Google Scholar 

  64. Lim S, Bast D, McGeer A, de Azavedo J, Low DE (2003) Antimicrobial susceptibility breakpoints and first-step parc mutations in Streptococcus pneumoniae: redefining fluoroquinolone resistance. Emerg Infect Dis 9(7):833–837

    Google Scholar 

  65. Blondeau JM, Zhao X, Hansen G, Drlica K (2001) Mutant prevention concentrations of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 45(2):433–438

    Google Scholar 

  66. Licata L, Smith CE, Goldschmidt RM, Barrett JF, Frosco M (1997) Comparison of the postantibiotic and postantibiotic sub-MIC effects of levofloxacin and ciprofloxacin on Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 41(5):950–955

    Google Scholar 

  67. Odenholt-Tornqvist I, Lowdin E, Cars O (1992) Postantibiotic sub-MIC effects of vancomycin, roxithromycin, sparfloxacin, and amikacin. Antimicrob Agents Chemother 36(9):1852–1858

    Google Scholar 

  68. Allen GP, Kaatz GW, Rybak MJ (2003) Activities of mutant prevention concentration-targeted moxifloxacin and levofloxacin against Streptococcus pneumoniae in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 47(8):2606–2614

    Google Scholar 

  69. Florea NR, Tessier PR, Zhang C, Nightingale CH, Nicolau DP (2004) Pharmacodynamics of moxifloxacin and levofloxacin at simulated epithelial lining fluid drug concentrations against Streptococcus pneumoniae. Antimicrob Agents Chemother 48(4):1215–1221

    Google Scholar 

  70. Deryke CA, Du X, Nicolau DP (2006) Evaluation of bacterial kill when modelling the bronchopulmonary pharmacokinetic profile of moxifloxacin and levofloxacin against parc-containing isolates of Streptococcus pneumoniae. J Antimicrob Chemother 58(3):601–609

    Google Scholar 

  71. Jones RN, Rubino CM, Bhavnani SM, Ambrose PG (2003) Worldwide antimicrobial susceptibility patterns and pharmacodynamic comparisons of gatifloxacin and levofloxacin against Streptococcus pneumoniae: report from the antimicrobial resistance rate epidemiology study team. Antimicrob Agents Chemother 47(1):292–296

    Google Scholar 

  72. Frei CR, Burgess DS (2005) Pharmacodynamic analysis of ceftriaxone, gatifloxacin, and levofloxacin against Streptococcus pneumoniae with the use of Monte Carlo simulation. Pharmacotherapy 25(9):1161–1167

    Google Scholar 

  73. Noreddin AM, Reese AA, Ostroski M, Hoban DJ, Zhanel GG (2007) Comparative pharmacodynamics of garenoxacin, gemifloxacin, and moxifloxacin in community-acquired pneumonia caused by Streptococcus pneumoniae: a Monte Carlo simulation analysis. Clin Ther 29(12):2685–2689

    Google Scholar 

  74. Liang B, Bai N, Cai Y, Wang R, Drlica K, Zhao X (2011) Mutant prevention concentration-based pharmacokinetic/pharmacodynamic indices as dosing targets for suppressing the enrichment of levofloxacin-resistant subpopulations of Staphylococcus aureus. Antimicrob Agents Chemother 55(5):2409–2412

    Google Scholar 

  75. Lister PD (2001) Pharmacodynamics of moxifloxacin and levofloxacin against Staphylococcus aureus and Staphylococcus epidermidis in an in vitro pharmacodynamic model. Clin Infect Dis 32(Suppl 1):S33–S38

    Google Scholar 

  76. Lewin CS, Morrissey I, Smith JT (1991) The mode of action of quinolones: the paradox in activity of low and high concentrations and activity in the anaerobic environment. Eur J Clin Microbiol Infect Dis 10(4):240–248

    Article  CAS  PubMed  Google Scholar 

  77. Wright DH, Gunderson BW, Hovde LB, Ross GH, Ibrahim KH, Rotschafer JC (2002) Comparative pharmacodynamics of three newer fluoroquinolones versus six strains of staphylococci in an in vitro model under aerobic and anaerobic conditions. Antimicrob Agents Chemother 46(5):1561–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zabinski RA, Walker KJ, Larsson AJ, Moody JA, Kaatz GW, Rotschafer JC (1995) Effect of aerobic and anaerobic environments on antistaphylococcal activities of five fluoroquinolones. Antimicrob Agents Chemother 39(2):507–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stein GE, Goldstein EJ (2006) Fluoroquinolones and anaerobes. Clin Infect Dis 42(11):1598–1607

    Article  CAS  PubMed  Google Scholar 

  80. Bayer HealthCare Pharmaceuticals (2008) Avelox prescribing information. Bayer HealthCare Pharmaceuticals, Wayne. NJ

    Google Scholar 

  81. Pfizer Corporation (2000) Trovan prescribing information. Pfizer Corporation, NewYork, NY

    Google Scholar 

  82. Peterson ML, Hovde LB, Wright DH, Brown GH, Hoang AD, Rotschafer JC (2002) Pharmacodynamics of trovafloxacin and levofloxacin against Bacteroides fragilis in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 46(1):203–210

    Google Scholar 

  83. Peterson ML, Hovde LB, Wright DH, Hoang AD, Raddatz JK, Boysen PJ et al (1999) Fluoroquinolone resistance in Bacteroides fragilis following sparfloxacin exposure. Antimicrob Agents Chemother 43(9):2251–2255

    Google Scholar 

  84. Peterson ML, Rotschafer JC, Piddock LJ (2003) Plasmid-mediated complementation of gyrA and gyrB in fluoroquinolone-resistant B acteroides fragilis. J Antimicrob Chemother 52(3):481–484

    Google Scholar 

  85. Ricci V, Peterson ML, Rotschafer JC, Wexler H, Piddock LJ (2004) Role of topoisomerase mutations and efflux in fluoroquinolone resistance of Bacteroides fragilis clinical isolates and laboratory mutants. Antimicrob Agents Chemother 48(4):1344–1346

    Google Scholar 

  86. Edlund C, Nord CE (1988) A review on the impact of 4-quinolones on the normal oropharyngeal and intestinal human microflora. Infection 16(1):8–12

    Google Scholar 

  87. Golan Y, McDermott LA, Jacobus NV, Goldstein EJ, Finegold S, Harrell LJ et al (2003) Emergence of fluoroquinolone resistance among Bacteroides species. J Antimicrob Chemother 52(2):208–213

    Google Scholar 

  88. Betriu C, Rodriguez-Avial I, Gomez M, Culebras E, Picazo JJ (2005) Changing patterns of fluoroquinolone resistance among Bacteroides fragilis group organisms over a 6-year period (1997-2002). Diagn Microbiol Infect Dis 53(3):221–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Rotschafer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Elshaboury, R.H., Dilworth, T.J., Rotschafer, J.C. (2016). Pharmacodynamics of Fluoroquinolones. In: Rotschafer, J., Andes, D., Rodvold, K. (eds) Antibiotic Pharmacodynamics. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3323-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3323-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3321-1

  • Online ISBN: 978-1-4939-3323-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics