Skip to main content
Log in

Non-destructive and on site method to assess the air-permeability in dimension stones and its relationship with other transport-related properties

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This work studies the suitability of the “Torrent” air-permeability test method for testing dimension stones. To test its feasibility, measurements were performed on stone slabs with porosities in the range of 0.2–17.2 %. Statistically, accurate and reliable measurements were achieved on stones with open porosities above 2 %. Close relations were found between air-permeability coefficient and other transport-related properties. Therefore, the air-permeability coefficient can be a parameter, on its own, providing useful information about the stone susceptibility to decay. Moreover, a graded classification is suggested with the purpose of providing information for a proper application of stones in constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andriani G, Walsh N (2003) Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull Eng Geol Environ 62(1):77–84. doi:10.1007/s10064-002-0174-1

    Google Scholar 

  2. Angeli M, Benavente D, Bigas J-P, Menéndez B, Hébert R, David C (2008) Modification of the porous network by salt crystallization in experimentally weathered sedimentary stones. Mater Struct 41(6):1091–1108. doi:10.1617/s11527-007-9308-z

    Article  Google Scholar 

  3. Barros RS, Oliveira DV, Varum H, Alves CAS, Camões A (2014) Experimental characterization of physical and mechanical properties of schist from Portugal. Constr Build Mater 50:617–630. doi:10.1016/j.conbuildmat.2013.10.008

    Article  Google Scholar 

  4. Bueno V (2004) Estudio de Factibilidad de un Nuevo Ensayo de Permeabilidad en Rocas. Univ. del Zulia, Maracaibo, p 88

  5. Cai J, Yu B (2011) A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp Porous Media 89(2):251–263. doi:10.1007/s11242-011-9767-0

    Article  MathSciNet  Google Scholar 

  6. Castela AS, Sena da Fonseca B, Duarte RG, Neves R, Montemor MF (2014) Influence of unsupported concrete media in corrosion assessment for steel reinforcing concrete by electrochemical impedance spectroscopy. Electrochim Acta 124:52–60. doi:10.1016/j.electacta.2013.11.157

    Article  Google Scholar 

  7. CEN (2000) Natural stone test methods: determination of water absorption coefficient by capillary. EN 1925

  8. CEN (2001) Natural stone test methods: determination of real density and apparent density, and of total and open porosity. EN 1936

  9. CEN (2005) Natural stone test methods: determination of water absorption at atmospheric pressure. EN 13755

  10. CEN (2010) Conservation of cultural property: determination of water vapour permeability. EN 15803

  11. CEN (2013) Conservation of cultural property: determination of drying properties. EN 16322

  12. Commission 25-PEM R (2006) Water absorption tube test. Test method II.4

  13. Denariè E, Jacobs F, Leeman A, Teruzzi T, Torrent R (2011) Specification and site control of the permeability of the cover concrete: the Swiss approach. Paper presented at the international RILEM conference on advances in construction materials through science and engineering, pp 478–485

  14. Figueiredo C, Folha R, Maurício A, Alves C, Aires-Barros L (2010) Pore structure and durability of Portuguese limestones: a case study. Limestone in the building environment: present day challenges for the preservation of the past, vol 331. Geological Society, London, pp 157–169

    Google Scholar 

  15. Franzen C, Mirwald PW (2004) Moisture content of natural stone: static and dynamic equilibrium with atmospheric humidity. Environ Geol 46(3–4):391–401. doi:10.1007/s00254-004-1040-1

    Google Scholar 

  16. García O, Malaga K (2012) Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J Cult Herit 13(1):77–82. doi:10.1016/j.culher.2011.07.004

    Article  Google Scholar 

  17. Hall C, Hamilton A (2013) Porosity–density relations in stone and brick materials. Mater Struct 1–7. doi:10.1617/s11527-013-0231-1

  18. Hall C, Hoff W (2002) Water transport in brick, stone, and concrete. Taylor & Francis, Oxon, p 318

  19. Hall C, Hoff WD, Nixon MR (1984) Water movement in porous building materials—VI. Evaporation and drying in brick and block materials. Build Environ 19(1):13–20. doi:10.1016/0360-1323(84)90009-X

    Article  Google Scholar 

  20. Heigold PC, Gilkeson RH, Castwright K, Reed PC (1980) Aquifer transmissivity from surficial electrical measurements. Groundwater 17:330–345

    Google Scholar 

  21. Hendrickx R (2013) Using the Karsten tube to estimate water transport parameters of porous building materials. Mater Struct 46(8):1309–1320. doi:10.1617/s11527-012-9975-2

    Article  MathSciNet  Google Scholar 

  22. Hoigard KR (2000) Dimension stone cladding: design, construction, evaluation, and repair, vol 1394. ASTM, West Conshohocken, p 184

  23. Hollander M, Wolfe D (1999) Nonparametric statistical methods. Wiley, New York, p 816

  24. Karaca Z (2010) Water absorption and dehydration of natural stones versus time. Constr Build Mater 24(5):786–790. doi:10.1016/j.conbuildmat.2009.10.029

    Article  Google Scholar 

  25. Kourkoulis SK, Ganniari-Papageorgiou E (2010) Experimental study of the size- and shape-effects of natural building stones. Constr Build Mater 24(5):803–810. doi:10.1016/j.conbuildmat.2009.10.027

    Article  Google Scholar 

  26. Kucharczyková B, Misák P, Vymazal T (2010) The Air-permeability measurement by torrent permeability tester. In: Proceedings of the 10th international conference on modern building materials, structures and techniques, Vilnius, 2010, pp 162–166

  27. La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74(1):186–191. doi:10.1016/j.porgcoat.2011.12.008

    Article  Google Scholar 

  28. Lima OAL, Niwas S (2000) Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. J Hydrol 235(1–2):12–26. doi:10.1016/S0022-1694(00)00256-0

    Article  Google Scholar 

  29. Lombillo I, Thomas C, Villegas L, Fernández-Álvarez JP, Norambuena-Contreras J (2013) Mechanical characterization of rubble stone masonry walls using non and minor destructive tests. Constr Build Mater 43:266–277. doi:10.1016/j.conbuildmat.2013.02.007

    Article  Google Scholar 

  30. Lopez-Arce P, Doehne E, Greenshields J, Benavente D, Young D (2009) Treatment of rising damp and salt decay: the historic masonry buildings of Adelaide, South Australia. Mater Struct 42(6):827–848. doi:10.1617/s11527-008-9427-1

    Article  Google Scholar 

  31. Martinho E, Dionísio A, Almeida F, Mendes M, Grangeia C (2014) Integrated geophysical approach for stone decay diagnosis in cultural heritage. Constr Build Mater 52:345–352. doi:10.1016/j.conbuildmat.2013.11.047

    Article  Google Scholar 

  32. MAS (2013) [www.m-a-s.com.ar/]. Accessed April 2013

  33. Miller AZ, Leal N, Liaz L, Regerio-Candelera MA, Silva RJC, Dionísio A, Macedo MF, Saiz-Jimenez C (2010) Primary bioreceptivity of limestones used in Southern European monuments. Limestone in the building environment: present day challenges for the preservation of the past, vol 331. Geological Society, London, pp 79–92

    Google Scholar 

  34. Neithalath N, Sumanasooriya MS, Deo O (2010) Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater Charact 61(8):802–813. doi:10.1016/j.matchar.2010.05.004

    Article  Google Scholar 

  35. Nelson P (1994) Permeability–porosity relationships in sedimentary rocks. Log Analyst 35:38–62

    Google Scholar 

  36. Neves R (2012) A permeabilidade ao ar e a carbonatação do betão nas estruturas. ULisboa—IST, Lisboa, p 416

  37. Neves R, Branco F, Brito J (2012) About the statistical interpretation of air permeability assessment results. Mater Struct 45(4):529–539. doi:10.1617/s11527-011-9780-3

    Article  Google Scholar 

  38. Nicholson DT (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surf Proc Landf 26(8):819–838. doi:10.1002/esp.228

    Article  Google Scholar 

  39. Nikitsin VI, Backiel-Brzozowska B (2013) Determination of capillary tortuosity coefficient in calculations of moisture transfer in building materials. Int J Heat Mass Transf 56(1–2):30–34. doi:10.1016/j.ijheatmasstransfer.2012.09.021

    Article  Google Scholar 

  40. Pinna D, Salvadori B, Porcinai S (2011) Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Constr Build Mater 25(5):2723–2732. doi:10.1016/j.conbuildmat.2010.12.023

    Article  Google Scholar 

  41. Pinto A, Alho A, Moura A, Henriques A, Carvalho C, Ramos J, Almeira N, Mestre V (2006) Manual da pedra natural para arquitectura. Direcção-Geral de Geologia e Energia, p 194

  42. Přikryl R, Smith BJ (2007) Building stone decay: from diagnosis to conservation. Geological Society of London, London, p 330

  43. Quagliarini E, Bondioli F, Goffredo GB, Cordoni C, Munafò P (2012) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57. doi:10.1016/j.conbuildmat.2012.07.006

    Article  Google Scholar 

  44. Quagliarini E, Bondioli F, Goffredo GB, Licciulli A, Munafò P (2013) Self-cleaning materials on architectural heritage: compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. J Cult Herit 14(1):1–7. doi:10.1016/j.culher.2012.02.006

    Article  Google Scholar 

  45. Reyes J, Corvo F, Espinosa-Morales Y, Dzul B, Perez T, Valdes C, Aguilar D, Quintana P (2011) Influence of air pollution on degradation of historic buildings at the urban tropical atmosphere of San Francisco de Campeche City, México. In: Monitoring, control and effects of air pollution. InTech, pp 201–226

  46. Romer M (2005) Effect of moisture and concrete composition on the torrent permeability measurement. Mater Struct 38(5):541–547. doi:10.1007/bf02479545

    Article  Google Scholar 

  47. Sarıışık G, Sarıışık A, Gökay MK (2013) Investigation the glazability of dimension andesites with glaze coating materials containing boron minerals in construction sector. Mater Struct 46(9):1507–1517. doi:10.1617/s11527-012-9992-1

    Article  Google Scholar 

  48. Sena da Fonseca B, Vilão A, Galhano C, Simão JAR (2014) Reusing coffee waste in manufacture of ceramics for construction. Adv Appl Ceram 113(3):159–166. doi:10.1179/1743676113y.0000000131

    Article  Google Scholar 

  49. Shapiro S, Wilk M (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3-4):591–611

    Article  MATH  MathSciNet  Google Scholar 

  50. SIA (2003) Construction en béton—Spécifications complémentaires, Annexe E: Perméabilité à l’air dans les Structures. SIA 262/1

  51. Siegesmund S, Dürrast H (2011) Physical and mechanical properties of rocks. Stone in architecture, 4th edn. Springer, Berlin, pp 97–225

    Chapter  Google Scholar 

  52. Siegesmund S, Grimm W, Durrast H, Ruedrich J (2010) Limestones in Germany used as building stones: an overview. Limestone in the building environment: present day challenges for the preservation of the past. Geological Society, London, pp 37–59

    Google Scholar 

  53. Siegesmund S, Török Á (2011) Building stones. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Springer, Berlin, Heidelberg, pp 11–95. doi:10.1007/978-3-642-14475-2_2

  54. Silva ZSG, Simão JAR (2009) The role of salt fog on alteration of dimension stone. Constr Build Mater 23(11):3321–3327. doi:10.1016/j.conbuildmat.2009.06.044

    Article  Google Scholar 

  55. Torrent R (1992) A two-chamber vacuum cell for measuring the coefficient of permeability to air of the concrete cover on site. Mater Struct 25(6):358–365. doi:10.1007/bf02472595

    Article  Google Scholar 

  56. Torrent R (2013) Non-destructive site air-permeability test—relation with other transport test methods. Materials Advanced Services Ltd, Buenos Aires, www.m-a-s.com.ar. Nov 2013

  57. Torrent R, Basheer M, Gonçalves AF (2007) Non-destructive methods to measure gas-permeability (Chapter 3). TC 189-NEC: State-of-the-Art Report. RILEM, 35–66

  58. Tournier B, Jeannette D, Destrigneville C (2000) Stone drying: an approach of the effective evaporating surface area In: Proceedings of 9th international congress on deterioration and conservation of stone, Venice, 2000, pp 629–635

  59. Urdan T (2005) Statistics in plain english—second edition. Lawrence Erlbaum Associates, Mahwah, p 184

  60. Vandevoorde D, Cnudde V, Dewanckele J, Brabant L, de Bouw M, Meynen V, Verhaeven E (2013) Validation of in situ applicable measuring techniques for analysis of the water adsorption by stone. Procedia Chem 8:317–327. doi:10.1016/j.proche.2013.03.039

    Article  Google Scholar 

  61. Vázquez P, Alonso FJ, Carrizo L, Molina E, Cultrone G, Blanco M, Zamora I (2013) Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Constr Build Mater 41:868–878. doi:10.1016/j.conbuildmat.2012.12.026

    Article  Google Scholar 

  62. Weibel R, Kristensen L, Olivarius M, Hjuler ML, Mathiesen A, Nielsen LH (2012) Investigating deviations from overall porosity-permeability trends. Paper presented at the proceedings 36th workshop on geothermal reservoir engineering, Stanford University, California, p 16

Download references

Acknowledgments

The authors express their gratitude to Dr. Pedro Cabral from DIMPOMAR, LDA and Eng. Thomas Kleba from MAGRATEX, LDA who generously provided the stones used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sena da Fonseca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sena da Fonseca, B., Castela, A.S., Duarte, R.G. et al. Non-destructive and on site method to assess the air-permeability in dimension stones and its relationship with other transport-related properties. Mater Struct 48, 3795–3809 (2015). https://doi.org/10.1617/s11527-014-0440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0440-2

Keywords

Navigation