Skip to main content
Log in

Effect of silica fume addition and repeated loading on chloride diffusion coefficient of concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, the effect of silica fume (SF) on the chloride diffusion coefficient of concrete subjected to repeated loading was examined. Portland cement was replaced by 5 and 10 % SF. Five cycles repeated loadings were applied to concrete specimens, the maximum loadings were 40 and 80 % of the axial cylinder compressive strength (\( f_{\text{c}}^{\prime } \)), respectively. The diffusion coefficients were calculated from the steady state in the chloride migration test using the Nernst-Planck equation. The service life of concrete in chloride environment was predicted by Life-365 model. The results indicate that the diffusion coefficients of concrete containing 5 and 10 % SF replacements are lower than that of the control concrete at the age of 28 days. This trend increases with the increase of SF replacement. Five cycles repeated loading at 40 % \( f_{\text{c}}^{\prime } \) or 80 % \( f_{\text{c}}^{\prime } \) increase the diffusion coefficients (D 28) for all mixes investigated in this study. However, the effect of 80 % \( f_{\text{c}}^{\prime } \) on D 28 of concrete with 10 % SF is significantly lower than that of the control concrete without SF. Compared with the control concrete without SF, 10 % SF replacements increase the service life of concrete by more than 10 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buenfeld NR, Glass GK, Hassanein AM et al (1998) Chloride transport in concrete subjected to electric field. J Mater Civ Eng 10(4):220–228

    Article  Google Scholar 

  2. Glass GK, Buenfeld NR (2001) Chloride-induced corrosion of steel in concrete. Prog Struct Eng Mater 2(4):448–458

    Article  Google Scholar 

  3. Jaffer SJ, Hansson CM (2009) Chloride-induced corrosion products of steel in cracked-concrete subjected to different loading conditions. Cem Concr Res 39(2):116–125

    Article  Google Scholar 

  4. Poupard O, Aït-Mokhtar A, Dumargue P (2004) Corrosion by chlorides in reinforced concrete: determination of chloride concentration threshold by impedance spectroscopy. Cem Concr Res 34(6):991–1000

    Article  Google Scholar 

  5. Chung DDL (2002) Review: improving cement-based materials by using silica fume. J Mater Sci 37(4):673–682

    Article  Google Scholar 

  6. Cohen MD, Bentur A (1988) Durability of Portland cement silica fume pastes in magnesium sulfate attack and sodium sulfate solution. ACI Mater J 85(3):148–157

    Google Scholar 

  7. Dotto JMR, de Abreu AG, Dal Molin DCC et al (2004) Influence of silica fume addition on concretes physical properties and on corrosion behaviour of reinforcement bars. Cem Concr Compos 26(1):31–39

    Article  Google Scholar 

  8. Shekarchi M, Rafiee A, Layssi H (2009) Long-term chloride diffusion in silica fume concrete in harsh marine climates. Cem Concr Compos 31(10):769–775

    Article  Google Scholar 

  9. Luther MD (1988) Silica fume (microsilica) concrete in bridges in the United States. Transp Res Rec 1204:11–20

    Google Scholar 

  10. Zain MFM, Safiuddin M, Mahmud H (2000) Development of high performance concrete using silica fume at relatively high water-binder ratios. Cem Concr Res 30(9):1501–1505

    Article  Google Scholar 

  11. Kjellsen KO, Hallgren M, Wallevik OH (2000) Fracture mechanical properties of high-performance concrete—influence of silica fume. Mater Struct 33(9):552–558

    Article  Google Scholar 

  12. Hooton RD (1993) Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack, freezing and thawing, and alkali-silica reactivity. ACI Mater J 90(2):143–151

    Google Scholar 

  13. Kayali O, Zhu B (2005) Corrosion performance of medium-strength and silica fume high-strength reinforced concrete in a chloride solution. Cem Concr Compos 27(1):117–124

    Article  Google Scholar 

  14. Gesoğlu M, Güneyisi E (2007) Strength development and chloride penetration in rubberized concretes with and without silica fume. Mater Struct 40(9):953–964

    Article  Google Scholar 

  15. Živica V (2000) Sulfate resistance of the cement materials based on the modified silica fume. Constr Build Mater 14(1):17–23

    Article  Google Scholar 

  16. Smith BG (2001) Durability of silica fume concrete exposed to chloride in hot climates. J Mater Civ Eng 13(1):41–48

    Article  Google Scholar 

  17. Toutanji H, McNeil S, Bayasi Z (1998) Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cem Concr Res 28(7):961–968

    Article  Google Scholar 

  18. Bentz DP (2000) Influence of silica fume on diffusivity in cement-based materials: II. Multi-scale modeling of concrete diffusivity. Cem Concr Res 30(7):1121–1129

    Article  Google Scholar 

  19. Saito M, Ishimori H (1995) Chloride permeability of concrete under static and repeated compressive loading. Cem Concr Res 25(4):803–808

    Article  Google Scholar 

  20. Samaha HR, Hover KC (1992) Influence of microcracking on the mass transport properties of concrete. ACI Mater J 89(4):416–424

    Google Scholar 

  21. Cao QW, Wan XM, Zhao TJ et al (2008) Effect of mechanical loading on chloride penetration into concrete. Zhejiang University Press, Hangzhou

    Google Scholar 

  22. Parant E, Pierre R, Maou FL (2007) Durability of a multiscale fibre reinforced cement composite in aggressive environment under service load. Cem Concr Res 37(7):1106–1114

    Article  Google Scholar 

  23. Sun W, Mu R, Luo X et al (2002) Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete. Cem Concr Res 32(12):1859–1864

    Article  Google Scholar 

  24. Yoon S, Wang K, Weiss WJ et al (2000) Interaction between loading, corrosion, and serviceability of reinforced concrete. ACI Mater J 97(6):637–644

    Google Scholar 

  25. Friedmann H, Amiri O, Aït-Mokhtar A et al (2004) A direct method for determining chloride diffusion coefficient by using migration test. Cem Concr Res 34(11):1967–1973

    Article  Google Scholar 

  26. Kermani A (1991) Permeability of stressed concrete. Build Res Inf 19(6):360–366

    Article  Google Scholar 

  27. Choinska MKA, Chatzigeorgiou G, Pijaudier-Cabot G (2007) Effects and interactions of temperature and stress-level related damage on permeability of concrete. Cem Concr Res 37(1):79–88

    Article  Google Scholar 

  28. Hearn N (1996) Effect of shrinkage and load-induced cracking on water permeability of concrete. ACI Mater J 96(2):234–241

    Google Scholar 

  29. Sugiyama T, Bremner TW, Holm TA (1996) Effect of stress on gas permeability in concrete. ACI Mater J 93(5):443–450

    Google Scholar 

  30. Kosmatka SH, Kerkhoff B, Panarese WC (2003) Design and control of concrete mixtures, 14th edn. Portland Cement Association, Skokie, pp 180–185

    Google Scholar 

  31. Japan Society of Civil Engineers standard. (2003) Test method for effective diffusion coefficient of chloride ion in concrete by migration. JSCE-G571

  32. Hisada M, Nagataki S, Otsuki N (1999) Evaluation of mineral admixtures on the viewpoint of chloride ion migration through mortar. Cem Concr Compos 21(5–6):443–448

    Article  Google Scholar 

  33. Prince W, Gagn R (2001) The effects of types of solutions used in accelerated chloride migration tests for concrete. Cem Concr Res 31(5):775–780

    Article  Google Scholar 

  34. McGrath PF, Hooton RD (1996) Influence of voltage on chloride diffusion coefficients from chloride migration tests. Cem Concr Res 26(8):1239–1244

    Article  Google Scholar 

  35. Feldman RF, Huang CY (1985) Properties of Portland cement-silica fume pastes II. Mechanical properties. Cem Concr Res 15(6):943–952

    Article  Google Scholar 

  36. Rao GA (2001) Development of strength with age of mortars containing silica fume. Cem Concr Res 31(8):1141–1146

    Article  Google Scholar 

  37. Hamad B, Machaka M (1999) Effect of transverse reinforcement on bond strength of reinforcing bars in silica fume concrete. Mater Struct 32(6):468–476

    Article  Google Scholar 

  38. Detwiler RJ, Mehta K (1989) Chemical and physical effects of silica fume on the mechanical behavior of concrete. ACI Mater J 86(6):609–614

    Google Scholar 

  39. Bentz DP, Stutzman PE (1994) Evolution of porosity and calcium hydroxide in laboratory concretes containing silica fume. Cem Concr Res 24(6):1044–1050

    Article  Google Scholar 

  40. Mazloom M, Ramezanianpour AA, Brooks JJ (2004) Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos 26(4):347–357

    Article  Google Scholar 

  41. Song HW, Jang JC, Saraswathy V, Byun KJ (2007) An estimation of the diffusivity of silica fume concrete. Build Environ 42(3):1358–1367

    Article  Google Scholar 

  42. Bentz DP, Jensen OM, Coats AM et al (2000) Influence of silica fume on diffusivity in cement-based materials: I Experimental and computer modeling studies on cement pastes. Cem Concr Res 30(6):953–962

    Article  Google Scholar 

  43. Andrade C (1993) Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem Concr Res 23(3):724–742

    Article  Google Scholar 

  44. Detwiler RJ, Kjellsen KO, Gjorv OE (1991) Resistance to chloride intrusion of concrete cured at different temperatures. ACI Mater J 88(1):19–24

    Google Scholar 

  45. Dhir RK, Jones MR, Ahmed HEH et al (1990) Rapid estimation of chloride diffusion coefficient in concrete. Mag Concr Res 42(152):177–185

    Article  Google Scholar 

  46. Zhang TW, Gjørv OE (1994) An electrochemical method for accelerated testing of chloride diffusivity in concrete. Cem Concr Res 24(8):1534–1548

    Article  Google Scholar 

  47. Song HW, Pack SW, Nam SH et al (2010) Estimation of the permeability of silica fume cement concrete. Constr Build Mater 24(3):315–321

    Article  Google Scholar 

  48. Ahmad S (2003) Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review. Cem Concr Compos 25(4–5):459–471

    Article  Google Scholar 

  49. Clifton JR (1993) Predicting the service life of concrete. ACI Mater J 90(6):611–617

    Google Scholar 

  50. Liang MT, Wang KL, Liang CH (1999) Service life prediction of reinforced concrete structures. Cem Concr Res 29(9):1411–1418

    Article  Google Scholar 

  51. Song HW, Shim HB, Petcherdchoo A et al (2009) Service life prediction of repaired concrete structures under chloride environment using finite difference method. Cem Concr Compos 31(2):120–127

    Article  Google Scholar 

  52. Zhang JY, Lounis Z (2009) Nonlinear relationships between parameters of simplified diffusion-based model for service life design of concrete structures exposed to chlorides. Cem Concr Compos 31(8):591–600

    Article  Google Scholar 

  53. Violetta B (2002) Life-365 service life prediction model. Concr Int 24(12):53–57

    Google Scholar 

  54. Boddy A, Bentz E, Thomas MDA et al (1999) An overview and sensitivity study of a multimechanistic chloride transport model. Cem Concr Res 29(6):827–837

    Article  Google Scholar 

  55. Life-365 V2.0.1 users manual, 2010

  56. Ehlen MA, Thomas MDA, Bentz EC (2009) Life-365 Service Life Prediction Model(TM) version 2.0. Concr Int 31(5):41–46

    Google Scholar 

  57. Manget PS, Molloy BT (1994) Prediction of long-term chloride concentration in concrete. Mater Struct 27(170):338–346

    Article  Google Scholar 

  58. Ba HJ, Zhang WM (2007) Accelerated life test and service life prediction of concrete. J Chin Ceram Soc 35(2):242–246 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the national natural science foundation of China (Grant no. 50808045), the natural science foundation of Beijing (Grant no. 2112024) and an open foundation of state key laboratory of coastal and offshore engineering, Dalian University of Technology (Grant no. LP1013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-man Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Wm., Ba, Hj. Effect of silica fume addition and repeated loading on chloride diffusion coefficient of concrete. Mater Struct 46, 1183–1191 (2013). https://doi.org/10.1617/s11527-012-9963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9963-6

Keywords

Navigation