Skip to main content
Log in

The influence of wind-induced compression failures on the mechanical properties of spruce structural timber

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Compression failures (CF) are defects in the wood structure in the form of buckled fibres. They are a well-known 'natural' phenomenon in softwood trees exposed to frequent or strong winds, but their influence on the utilisation of timber is still debated. While a reduction of the mechanical properties in bending and tension at the fibre level and in small clear specimens is generally acknowledged, the effect is less obvious with structural timber in the presence of other defects such as knots or grain deviations. In the presented case study a statistically significant reduction of the moduli of rupture and elasticity in bending is observed in a sample of 563 squared timber beams, but the characteristic values of the mechanical properties still exceed the limits for the strength classes of visually graded structural timber (according to the Swiss standard SIA 265). Nevertheless, because of the potential safety risk by the more brittle fracture behaviour, it is recommended to exclude timber with detected CF from use in load bearing structures stressed in tension or bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trendelenburg R (1940) Über Faserstauchungen in Holz und ihre Überwallung durch den Baum. Holz als Roh- und Werkstoff 3(7/8):209–221

    Article  Google Scholar 

  2. Mergen F, Winer HI (1952) Compression failures in the boles of living conifers. Journal of Forestry 50:677–679

    Google Scholar 

  3. Delorme A (1974) Über das Auftreten von Faserstauchungen in Fichtensturmholz. Forstarchiv 45(7):121–128

    Google Scholar 

  4. Timell TE (1986) Compression Wood in Gymnosperms. Volume 3, Chapter 15.2.1.5. Springer, Berlin

    Google Scholar 

  5. Koch G (1999) Sekundäre Veränderungen im Holz dynamisch beanspruchter Fichten (Picea abies [L.] Karst.) aus immissionsbelasteten und windexponierten Hochlagenbeständen. Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft, Hamburg, Nr. 192

  6. Kucera LJ, Bariska M (1982) On the fracture morphology in wood. Part 1: A SEM-study of deformations in wood of spruce and aspen upon ultimate axial compression load. Wood Sci Technol 16:241–259

    Article  Google Scholar 

  7. Wilkins AP (1986) The nomenclature of cell wall deformations, Wood Sci Technol 20:97–109

    Google Scholar 

  8. Terziev N, Geoffrey D, Marklund A (2005) Dislocations in Norway spruce fibres and their effect on properties of pulp and paper. Holzforschung 59:163–169

    Article  Google Scholar 

  9. Sonderegger W, Niemz P (2004) The influence of compression failure on the bending, impact bending and tensile strength of spruce wood and the evaluation of non-destructive methods for early detection. Holz als Roh- und Werkstoff 62(5):335–342

    Article  Google Scholar 

  10. Glos P, Denzler JK (2004) Einfluss von Faserstauchungen auf die Festigkeit von Fichtenbauholz. Schweiz Z Forstwes 155(12):528–532

    Google Scholar 

  11. Hoffmeyer P (2003) Mechanical Properties of Timber from Wind Damaged Norway Spruce. In: L. Salmén (Ed) Proceedings of the Second International Conference of the European Society for Wood Mechanics, Stockholm, Sweden, 25–28, May 2003

  12. SIA 265/1 (2003) Construction en bois – Spécifications complémentaires. Société Suisse des Ingénieurs et des Architectes, Zurich

    Google Scholar 

  13. Arnold M (2003) Compression Failures in wind-damaged Spruce Trees. In: B. Ruck et al. (ed) Proceedings International Conference Wind Effects on Trees. 16–18. September 2003, University of Karlsruhe, Germany, Karlsruhe, pp 253–260

  14. EN 338 (2003) Structural timber – Strength classes

  15. EN 408 (1995) Timber structures – Structural timber and glued laminated timber – Determination of some physical and mechanical properties

  16. prEN 384 (2000) Structural timber – Determination of characteristic values of mechanical properties

  17. SIA 265 (2003) Construction en bois. Société Suisse des Ingénieurs et des Architectes, Zurich

    Google Scholar 

  18. Steiger R (1995) Biege – Zug- und Druckversuche an Schweizer Fichtenholz', Forschungsbericht ETH/IBK Nr. 207, Birkhäuser, Basel

    Google Scholar 

  19. Steiger R (1996) Mechanische Eigenschaften von Schweizer Fichten-Bauholz bei Biege-Zug-Druck-und kombinierter M/N-Beanspruchung; Sortierung von Rund-und Schnittholz mittels Ultraschall, Forschungsbericht ETH/IBK Nr. 221, Birkhäuser, Basel

    Google Scholar 

  20. Bernasconi A, Boström L, Schacht B (1999) Detection of severe timber defects by machine grading. Proceedings CIB-W18, 32. meeting, Graz, Austria, paper 32-5-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arnold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, M., Steiger, R. The influence of wind-induced compression failures on the mechanical properties of spruce structural timber. Mater Struct 40, 57–68 (2007). https://doi.org/10.1617/s11527-006-9120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-006-9120-1

Keywords

Navigation