Skip to main content
Log in

Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

A Correction to this article was published on 18 April 2024

This article has been updated

Abstract

Physical, enzymatic and chemical methods were used to develop an efficient procedure for preparing gelatine hydrogels of appropriate strength and elastic properties for applications as enzyme carriers. The concentrations of the crosslinking enzyme (transglutaminase), the initial amount of gelatine, the production time and the effect of additional crosslinking with glutaraldehyde were examined. As a result, the following conditions were selected: 0.1 g cm−3 solution of gelatine, 0.01 g cm−3 of transglutaminase (mTGase), a minimum of 2 h incubation at 4°C and an additional step of crosslinking with 1.0 vol. % of glutaraldehyde. Next, the absorption properties and storage stability of hydrogels so obtained were determined. From these results, it was observed that, with the exception of the physical gel, the remaining materials presented a relatively high resistance to hydrolytic degradation and retained their original spatial structure without any visible damages. The immobilisation experiments indicated gelatine-based hydrogels crosslinked with transglutaminase as suitable for use as matrices for the entrapment of enzymes, which catalyse the conversion of low-molecular mass compounds. In addition to the potential for effective re-use in subsequent batch processes, the essential advantage of the immobilised β-galactosidase obtained in the current study is a marked reduction in its volume under storage conditions of long duration, without any significant decline in catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization and applications: A review. Journal of Advanced Research, 6, 105–121. DOI: 10.1016/j.jare.2013.07.006.

    Article  CAS  Google Scholar 

  • Babin, H., & Dickinson, E. (2001). Influence of transglutaminase treatment on the thermoreversible gelation of gelatin. Food Hydrocolloids, 15, 271–276. DOI: 10.1016/s0268-005x(01)00025-x.

    Article  CAS  Google Scholar 

  • Bučko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlík, J., Tkáč, J., Gemeiner, P., Lacík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičová, D., & Švitel, J. (2012). Immobilization in biotechnology and biorecognition: From macro- to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3.

    Google Scholar 

  • Choi, J. M., Han, S. S., & Kim, H. S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances. DOI: 10.1016/j.biotechadv.2015.02.014. (in press)

    Google Scholar 

  • Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: An overview on techniques and support materials. Biotech, 3, 1–9. DOI: 10.1007/s13205-012-0071-7.

    Google Scholar 

  • Elleuche, S., Schröder, C., Sahm, K., & Antranikian, G. (2014). Extremozymes — biocatalysts with unique properties from extremophilic microorganisms. Current Opinion in Biotechnology, 29, 116–123. DOI: 10.1016/j.copbio.2014.04.003.

    Article  CAS  Google Scholar 

  • Elnashar, M. M. M. (2010). Review Article: Immobilized molecules using biomaterials and nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1, 61–77. DOI: 10.4236/jbnb.2010.11008.

    Article  CAS  Google Scholar 

  • Fuchsbauer, H. L., Gerber, U., Engelmann, J., Seeger, T., Sinks, C., & Hecht, T. (1996). Influence of gelatin matrices cross-linked with transglutaminase on the properties of an enclosed bioactive material using β-galactosidase as model system. Biomaterials, 17, 1481–1488. DOI: 10.1016/0142-9612(96)89772-9.

    Article  CAS  Google Scholar 

  • Gerrard, J. A. (2002). Protein—protein crosslinking in food: Methods, consequences, applications. Trends in Food Science & Technology, 13, 391–399. DOI: 10.1016/s0924-2244(02)00257-1.

    Article  CAS  Google Scholar 

  • Ghan, Z. H., Zhang, T., Liu, Y. C., & Wu, D. C. (2012). Temperature-triggered enzyme immobilization and release based on cross-linked gelatin nanoparticles. PLoS ONE, 7, e47154. DOI: 10.1371/journal.pone.0047154.

    Article  Google Scholar 

  • Griffin, M., Casadio, R., & Bergamini, C. M. (2002). Transglutaminases: Nature’s biological glues. Biochemical Journal, 368, 377–396. DOI: 10.1042/bj20021234.

    Article  CAS  Google Scholar 

  • Haider, T., & Husain, Q. Y. (2008). Concanavalin A layered calcium alginate—starch beads immobilized β-galactosidase as a therapeutic agent for lactose intolerant patients. International Journal of Pharmaceutics, 359, 1–6. DOI: 10.1016/j.ijpharm.2008.03.013.

    Article  CAS  Google Scholar 

  • Hoffman, A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 54, 3–12. DOI: 10.1016/s0169-409x(01)00239-3.

    Article  CAS  Google Scholar 

  • Ito, A., Mase, A., Takizawa, Y., Shinkai, M., Honda, H., Hata, K. I., Ueda, M., & Kobayashi, T. (2003). Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering. Journal of Bioscience and Bioengineering, 95, 196–199. DOI: 10.1016/s1389-1723(03)80129-9.

    Article  CAS  Google Scholar 

  • Koetting, M. C., Peters, J. T., Steichen, S. D., & Peppas, N. A. (2015). Stimulus-responsive hydrogels: Theory, modern advances and applications. Materials Science and Engineering: R, 93, 1–49. DOI: 10.1016/j.mser.2015.04.001.

    Article  Google Scholar 

  • Labus, K., Turek, A., Liesiene, J., & Bryjak, J. (2011). Efficient Agaricus bisporus tyrosinase immobilization on cellulosebased carriers. Biochemical Engineering Journal, 56, 232–240. DOI: 10.1016/j.bej.2011.07.003.

    Article  CAS  Google Scholar 

  • Labus, K., Szymańska, K., Bryjak, J., & Jarzębski, A. B. (2015). Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts. Chemical Papers, 69, 1058–1066: DOI: 10.1515/chempap-2015-0115.

    Article  CAS  Google Scholar 

  • Liu, L. S., Kost, J., Yan, F., & Spiro, R. C. (2012). Hydrogels from biopolymer hybrid for biomedical, food and functional food applications. Polymers, 4, 997–1011. DOI: 10.3390/polym4020997.

    Article  Google Scholar 

  • Mai, T. H. A., Tran, V. N., & Le, V. V. M. (2013). Biochemical studies on the immobilized lactase in the combined alginate—carboxymethyl cellulose gel. Biochemical Engineering Journal, 74, 81–87. DOI: 10.1016/j.bej.2013.03.003.

    Article  CAS  Google Scholar 

  • Moreira Teixeira, L. S., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33, 1281–1290. DOI: 10.1016/j.biomaterials.2011.10.067.

    Article  CAS  Google Scholar 

  • Nielsen, P. M. (1995). Reactions and potential industrial applications of transglutaminase: Review of literature and patents. Food Biotechnology, 9, 119–156. DOI: 10.1080/08905439509549889.

    Article  CAS  Google Scholar 

  • Patel, A., & Mequanint, K. (2011). Hydrogel biomaterials. In R. Fazel-Rezai (Ed.), Biomedical engineering — frontiers and challenges (pp. 275–296). Rijeka, Croatia: InTech. DOI: 10.5772/24856.

    Google Scholar 

  • Ross-Murphy, S. B. (1992). Structure and rheology of gelatin gels: Recent progress. Polymer, 33, 2622–2627. DOI: 10.1016/0032-3861(92)91146-s.

    Article  CAS  Google Scholar 

  • Ryšlava, H., Doubnerová, V., Kavan, D., & Vaněk, O. (2013). Effect of posttranslational modifications on enzyme function and assembly. Journal of Proteomics, 92, 80–109. DOI: 10.1016/j.jprot.2013.03.025.

    Article  Google Scholar 

  • Shen, Q. Y., Yang, R. J., Hua, X., Ye, F. I., Zhang, W. B., & Zhao, W. (2011). Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry, 46, 1565–1571. DOI: 10.1016/j.procbio.2011.04.010.

    Article  CAS  Google Scholar 

  • Song, Y. S., Lee, J. H., Kang, S. W., & Kim, S. W. (2010). Performance of β-galactosidase pretreated with lactose to prevent activity loss during the enzyme immobilisation process. Food Chemistry, 123, 1–5. DOI: 10.1016/j.foodchem.2010.04.043.

    Article  CAS  Google Scholar 

  • Trevan, M. D. (1988). Enzyme immobilization by entrapment. In M. J. Walker (Ed.), New protein techniques, 3 (pp. 491–494). Clifton, NJ, USA: Humana Press. DOI: 10.1385/0-89603-126-8:491.

    Article  CAS  Google Scholar 

  • Trusek-Holownia, A., & Noworyta, A. (2015). Efficient utilisation of hydrogel preparations with encapsulated enzymes — a case study on catalase and hydrogen peroxide degradation. Biotechnology Reports, 6, 13–19. DOI: 10.1016/j.btre.2014.12.012.

    Article  Google Scholar 

  • Ward, A. G., & Courts, A. (1977). The science and technology of gelatin. New York, NY, USA: Academic Press.

    Google Scholar 

  • Washizu, K., Ando, K., Koikeda, S., Hirose, S., Matsuura, A., Takagi, H., Motoki, M., & Takeuchi, K. (1994). Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Bioscience, Biotechnology and Biochemistry, 58, 82–87. DOI: 10.1271/bbb.58.82.

    Article  CAS  Google Scholar 

  • Wentworth, D. S., Skonberg, D., Donahue, D. W., & Ghanem, A. (2004). Application of chitosan-entrapped β-galactosidase in a packed-bed reactor system. Journal of Applied Polymer Science, 91, 1294–1299. DOI: 10.1002/app.13276.

    Article  CAS  Google Scholar 

  • Zhang, S. T., Gao, S. F., & Gao, G. Q. (2010). Immobilization of β-galactosidase onto magnetic beads. Applied Biochemistry and Biotechnology, 160, 1386–1393. DOI: 10.1007/s12010-009-8600-5.

    Article  CAS  Google Scholar 

  • Zhu, Y., Rinzema, A., Tramper, J., & Bol, J. (1995). Microbial transglutaminase — a review of its production and application in food processing. Applied Microbiology and Biotechnology, 44, 277–282. DOI: 10.1007/bf00169916.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina Labus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labus, K., Drozd, A. & Trusek-Holownia, A. Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalysts. Chem. Pap. 70, 523–530 (2016). https://doi.org/10.1515/chempap-2015-0235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0235

Keywords

Navigation