Skip to main content
Log in

Ce(III) immobilised on aminated epichlorohydrin-activated agarose matrix — “green” and efficient catalyst for transamidation of carboxamides

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The present study reports the preparation and characterisation of Ce(III) immobilised on an aminated epichlorohydrin-activated agarose matrix (CAEA) as a “green” catalyst. The catalyst was synthesised by the reaction of the epichlorohydrin-activated agarose matrix with ammonia solution, which was then treated with Ce(NO3)3 · 6H2O. The catalyst (CAEA) was characterised by FT-IR, far IR, CHN, XRD, TGA, and ICP techniques. CAEA is shown to be an effective and reusable heterogeneous catalyst for the transamidation of carboxamides with amines under solvent-free conditions. The catalyst was successfully applied to the synthesis of a wide range of aromatic and aliphatic amides. High efficiency, mild reaction conditions, easy work-up, simple separation and also reusability are important advantages of this catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alghool, S., Abd El-Halim, H. F., Abd El-sadek, M. S., Yahia, I. S., & Wahab, L. A. (2013). Synthesis, thermal characterization, and antimicrobial activity of lanthanum, cerium, and thorium complexes of amino acid Schiff base ligand. Journal of Thermal Analysis and Calorimetry, 112 671–681. DOI: 10.1007/s10973-012-2628-4.

    Article  CAS  Google Scholar 

  • Allen, C. L., Atkinson, B. N., & Williams, J. M. J. (2012). Transamidation of primary amides with amines using hydroxylamine hydrochloride as an inorganic catalyst. Angewandte Chemie International Edition, 51 1383–1386. DOI: 10.1002/anie.201107348.

    Article  CAS  Google Scholar 

  • Anirudhan, T. S., Rauf, T. A., & Rejeena, S. R. (2012). Removal and recovery of phosphate ions from aqueous solutions by amine functionalized epichlorohydrin-grafted cellulose. Desalination, 285 277–284. DOI: 10.1016/j.desal.2011.10.014.

    Article  CAS  Google Scholar 

  • Atkinson, B. N., Chhatwal, A. R., Lomax, H. V., Walton, J. W., & Williams, J. M. J. (2012). Transamidation of primary amides with amines catalyzed by zirconocene dichloride. Chemical Communications, 48 11626–11628. DOI: 10.1039/c2cc37427g.

    Article  CAS  Google Scholar 

  • Ayub Ali, Md., Hakim Siddiki, S. M. A., Kon, K., & Shimizu, K. I. (2014). Fe+3-exchanged clay catalyzed transamidation of amides with amines under solvent-free condition. Tetrahedron Letters, 55 1316–1319. DOI: 10.1016/j.tetlet.2013.12.111.

    Article  CAS  Google Scholar 

  • Becerra-Figueroa, L., Ojeda-Porras, A., & Gamba-Sánchez, D. (2014). Transamidation of carboxamides catalyzed by Fe(III) and water. The Journal of Organic Chemistry, 79 4544–4552. DOI: 10.1021/jo500562w.

    Article  CAS  Google Scholar 

  • Cao, X. J., Zhu, J. W., Wang, D. W., Dai, G. C., & Wu, X. Y. (1997). Affinity chromatography purification of urokinase with epichlorohydrin activited agarose martix. Chinese Journal of Chemical Enginneering, 5 69–73.

    CAS  Google Scholar 

  • Dam, J. H., Osztrovszky, G., Nordstrøm, L. U., & Madsen, R. (2010). Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes. Chemistry — A European Journal, 16 6820–6827. DOI: 10.1002/chem.201000569.

    Article  CAS  Google Scholar 

  • Du, J. A., Luo, K., & Zhang, X. L. (2014). Synthesis of amides through an oxidative amidation of tetrazoles with aldehydes under transition-metal-free conditions. RSC Advances, 4 54539–54546. DOI: 10.1039/c4ra07658c.

    Article  CAS  Google Scholar 

  • El-Arnaouty, M. B., Eid, M., Atia, A., & Dessouki, A. (2009). Characterization and application of grafted polypropylene and polystyrene treated with epichlorohydrin coupled with cellulose or starch for immobilization processes. Journal of Applied Polymer Science, 112 629–638. DOI: 10.1002/app.29364.

    Article  CAS  Google Scholar 

  • Fang, C., Qian, W. X., & Bao, W. L. (2008). A mild and clean method for oxidative formation of amides from aldehydes and amines. Synlett, 2008 2529–2531. DOI: 10.1055/s-2008-1078218.

    Article  Google Scholar 

  • Fu, R. Z., Yang, Y., Chen, Z. K., Lai, W. C., Ma, Y. F., Wang, Q., & Yuan, R. X. (2014). Microwave-assisted heteropolyanion-based ionic liquids catalyzed transamidation of non-activated carboxamides with amines under solvent-free conditions. Tetrahedron, 70 9492–9499. DOI: 10.1016/j.tet.2014.10.066.

    Article  CAS  Google Scholar 

  • Gaye, M., Tamboura, F. B., & Sall, A. S. (2003). Spectroscopic studies of some lanthanide(III) nitrate complexes synthesized from a new ligand 2,6-bis-(salicylaldehyde hydrazone)-4-chlorophenol. Bulletin of the Chemical Society of Ethiopia, 17 27–34. DOI: 10.4314/bcse.v17i1.61726.

    Article  CAS  Google Scholar 

  • Ghodsinia, S. S. E., Akhlaghinia, B., Safaei, E., & Eshghi, H. (2013). Green and selective synthesis of N-substitued amides using water soluble porphyrazinato copper(II) catalyst. Journal of the Brazilian Chemical Society, 24 895–903. DOI: 10.5935/0103-5053.20130115.

    CAS  Google Scholar 

  • Ghosh, S. C., Li, C. C., Zeng, H. C., Ngiam, J. S. Y., Seayad, A. M., & Chen, A. Q. (2014). Mesoporous niobium oxide spheres as an effective catalyst for the transamidation of primary amides with amines. Advanced Synthesis & Catalysis, 356 475–484. DOI: 10.1002/adsc.201300717.

    Article  CAS  Google Scholar 

  • Guo, Z. Q., Liu, Q., Wei, X. H., Zhang, Y. B., Tong, H. B., Chao, J. B., Guo, J. P., & Liu, D. S. (2013). 2-Aminopyrrolyl dilithium compounds: Synthesis, structural diversity, and catalytic activity for amidation of aldehydes with amines. Organometallics, 32 4677–4683. DOI: 10.1021/om4006609.

    Article  CAS  Google Scholar 

  • Hoerter, J. M., Otte, K. M., Gellman, S. H., Cui, Q. A., & Stahl, S. S. (2008). Discovery and mechanistic study of AlIII-catalyzed transamidation of tertiary amides. Journal of the American Chemical Society, 130 647–654. DOI: 10.1021/ja0762994.

    Article  CAS  Google Scholar 

  • Iranpoor, N., Firouzabadi, H., Motevalli, S., & Talebi, M. (2013). Palladium-free aminocarbonylation of aryl, benzyl, and styryl iodides and bromides by amines using Mo(CO)6 and norbornadiene. Tetrahedron, 69 418–426. DOI: 10.1016/j.tet.2012.10.002.

    Article  CAS  Google Scholar 

  • Jegan, A., Ramasubbu, A., Saravanan, S., & Vasanthkumar, S. (2011). One-pot synthesis and characterization of biopolymer-iron oxide nanocomposite. International Journal of Nano Dimension, 2 105–110.

    CAS  Google Scholar 

  • Kawagoe, Y., Moriyama, K., & Togo, H. (2013). Facile preparation of amides from carboxylic acids and amines with ion-supported Ph3P. Tetrahedron, 69 3971–3977. DOI: 10.1016/j.tet.2013.03.021.

    Article  CAS  Google Scholar 

  • Kunishima, M., Watanaba, Y., Terao, K., & Tani, S. (2004). Substrate-specific amidation of carboxylic acids in a liquid-liquid two phase system using cyclodextrins as inverse phase-transfer catalysts. European Journal of Organic Chemistry, 2004 4535–4540. DOI: 10.1002/ejoc.200400470.

    Article  Google Scholar 

  • Lanigan, R. M., Starkov, P., & Sheppard, T. D. (2013). Direct synthesis of amides from carboxylic acids and amines using B(OCH2CF3)3. The Journal of Organic Chemistry, 78 4512–4523. DOI: 10.1021/jo400509n.

    Article  CAS  Google Scholar 

  • Lundberg, H., Tinnis, F., Selander, N., & Adolfsson, H. (2014). Catalytic amide formation from non-activated carboxylic acids and amines. Chemical Society Reviews, 43 2714–2742. DOI: 10.1039/c3cs60345h.

    Article  CAS  Google Scholar 

  • Oza, M., Meena, R., & Siddhanta, A. K. (2012). Facile synthesis of fluorescent polysaccharides: Cytosine grafted agarose and κ-carrageenan. Carbohydrate Polymers, 87 1971–1979. DOI: 10.1016/j.carbpol.2011.10.004.

    Article  CAS  Google Scholar 

  • Quan, Z. J., Xia, H. D., Zhang, Z., Da, Y. X., & Wang, X. C. (2014). Ligand-free CuTC-catalyzed N-arylation of amides, anilines and 4-aminoantipyrine: synthesis of N-arylacrylamides, 4-amido-N-phenylbenzamides and 4-amino (N-phenyl)antipyrenes. Applied Organometallic Chemistry, 28 81–85. DOI: 10.1002/aoc.3080.

    Article  CAS  Google Scholar 

  • Rao, S. N., Mohan, R. D., & Adimurthy, S. (2013). l-proline: An efficient catalyst for transamidation of carboxamides with amines. Organic Letters, 15 1496–1499. DOI: 10.1021/ol4002625.

    Article  CAS  Google Scholar 

  • Raphael, E., Avellaneda, C. O., Manzolli, B., & Pawlicka, A. (2010). Agar-based films for application as polymer electrolytes. Electrochimica Acta, 55 1455–1459. DOI: 10.1016/j.electacta.2009.06.010.

    Article  CAS  Google Scholar 

  • Rasheed, S., Rao, D. N., Reddy, A. S., Shankar, R., & Das, P. (2015). Sulphuric acid immobilized on silica gel (H2SO4—SiO2) as an eco-friendly catalyst for transamidation. RSC Advances, 5 10567–10574. DOI: 10.1039/c4ra16571c.

    Article  CAS  Google Scholar 

  • Razavi, N., & Akhlaghinia, B. (2015). Cu(II) immobilized on aminated epichlorohydrin activated silica (CAES): as a new, green and efficient nanocatalyst for preparation of 5-substituted-1H-tetrazoles. RSC Advances, 5 12372–12381. DOI: 10.1039/c4ra15148h.

    Article  CAS  Google Scholar 

  • Rhim, J. W. (2012). Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film. Journal of Food Science, 77 N66–N73. DOI: 10.1111/j.1750-3841.2012.02988.x.

    Article  Google Scholar 

  • Rossi, S. A., Shimkin, K. W., Xu, Q., Mori-Quiroz, L. M., & Watson, D. A. (2013). Selective formation of secondary amides via the copper-catalyzed cross-coupling of alkylboronic acids with primary amides. Organic Letters, 15 2314–2317. DOI: 10.1021/ol401004r.

    Article  CAS  Google Scholar 

  • Ruiz-Méndez, M. V., Posada de la Paz, M., Abian, J., Calaf, R. E., Blount, B., Castro-Molero, N., Philen, R., & Gelpí, E. (2001). Storage time and deodorization temperature influence the formation of aniline-derived compounds in denatured rapeseed oils. Food and Chemical Toxicology, 39 91–96. DOI: 10.1016/s0278-6915(00)00111-3.

    Article  Google Scholar 

  • Sergeeva, M. V., Mozhaev, V. V., Rich, J. O., & Khmelnitsky, Y. L. (2000). Lipase-catalyzed transamidation of non-activated amides in organic solvent. Biotechnology Letters, 22 1419–1422. DOI: 10.1023/a:1005621117392.

    Article  CAS  Google Scholar 

  • Schley, N. D., Dobereiner, G. E., & Crabtree, R. H. (2011). Oxidative synthesis of amides and pyrroles via dehydrogenative alcohol oxidation by ruthenium diphosphine diamine complexes. Organometallics, 30 4174–4179. DOI: 10.1021/om2004755.

    Article  CAS  Google Scholar 

  • Silveira, G., de Morais, A., Mendes Villis, P. C., Marchetti Maroneze, C., Gushikem, Y., Serpa Lucho, A. M., & Pissettia, F. L. (2012). Electrooxidation of nitrite on a silica-cerium mixed oxide carbon paste electrode. Journal of Colloid and Interface Science, 369 302–308. DOI: 10.1016/j.jcis.2011.11.060.

    Article  CAS  Google Scholar 

  • Singh, D. P., Allam, B. K., Singh, K. M., & Singh, V. P. (2014). A binuclear Mn(II) complex as an efficient catalyst for transamidation of carboxamides with amines. RSC Advances, 4 1155–1158. DOI: 10.1039/c3ra45176c.

    Article  CAS  Google Scholar 

  • Starkov, P., & Sheppard, T. D. (2011). Borate esters as conveninet reagents for direct amidation of carboxylic acids and transamidation of primary amides. Organic & Biomolecular Chemistry, 9 1320–1323. DOI: 10.1039/c0ob01069c.

    Article  CAS  Google Scholar 

  • Stephenson, N. A., Zhu, J. A., Gellman, S. H., & Stahl, S. S. (2009). Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. Journal of the American Chemical Society, 131 10003–10008. DOI: 10.1021/ja8094262.

    Article  CAS  Google Scholar 

  • Tamura, M., Tonomura, T., Shimizu, K. I., & Satsuma, A. (2012). Transamidation of amides with amines under solvent-free conditions using a CeO2 catalyst. Green Chemistry, 14 717–724. DOI: 10.1039/c2gc16316k.

    Article  CAS  Google Scholar 

  • Tang, X. R., Chen, S. L., & Wang, L. (2012). Optimization and antifungal activity of chalcone analogues. Asian Journal of Chemistry, 24 2516–2518.

    CAS  Google Scholar 

  • Wang, N. N., Zou, X. Y., Ma, J. A., & Li, F. (2014a). The direct synthesis of N-alkylated amides via a tandem hydration/N-alkylation reaction from nitriles, aldoximes and alcohols. Chemical Communications, 50 8303–8305. DOI: 10.1039/c4cc02742f.

    Article  CAS  Google Scholar 

  • Wang, Y. H., Wang, F., Zhang, C. F., Zhang, J. A., Li, M. R., & Xu, J. (2014b). Transformylating amine with DMF to formamide over CeO2 catalyst. Chemical Communications, 50 2438–2441. DOI: 10.1039/c3cc48400a.

    Article  CAS  Google Scholar 

  • Wu, Y., Geng, F. Y., Chang, P. R., Yu, J. G., & Ma, X. F. (2009). Effect of agarose on the microstructure and performance of potato starch film. Carbohydrate Polymers, 76 299–304. DOI: 10.1016/j.carbpol.2008.10.031.

    Article  CAS  Google Scholar 

  • Yamansarova, E. T., Kukovinets, O. S., Zainullin, R. A., Galin, F. Z., & Abdullin, M. I. (2005). Synthesis of nitrogen-containing phenoxyacetic acid derivatives. Russian Journal of Organic Chemistry, 41 546–550. DOI: 10.1007/s11178-005-0201-3.

    Article  CAS  Google Scholar 

  • Zahir, M. H. (2013). Synthesis and characterization of trivalent cerium complexes of p-tert-butylcalix[4,6,8]arenes: Effect of organic solvents. Journal of Chemistry, 2013 494392. DOI: 10.1155/2013/494392.

    Article  Google Scholar 

  • Zhang, M., Imm, S., Bähn, S., Neubert, L., Neumann, H., & Beller, M. (2012). Efficient copper(II) catalyzed transamidation of non-activated primary carboxamides and ureas with amines. Angewandte Chemie International Edition, 51 3905–3909. DOI: 10.1002/anie.201108599.

    Article  CAS  Google Scholar 

  • Zhu, Y. H., Li, C. Z., Biying, A. O., Sudarmadji, M., Chen, A. G., Tuan, T. D., & Seayad, A. M. (2011). Stabilized well-dispersed Pd(0) nanoparticles for aminocarbonylation of aryl halides. Dalton Transactions, 40 9320–9325. DOI: 10.1039/c1dt10927h.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batool Akhlaghinia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, Z., Akhlaghinia, B. Ce(III) immobilised on aminated epichlorohydrin-activated agarose matrix — “green” and efficient catalyst for transamidation of carboxamides. Chem. Pap. 69, 1421–1437 (2015). https://doi.org/10.1515/chempap-2015-0168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0168

Keywords

Navigation