Skip to main content
Log in

New bulk liquid membrane oscillator composed of two coupled oscillators with diffusion-mediated physical coupling

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A new type of bulk liquid membrane system, which represents the first example of a bulk liquid membrane oscillator characterised by the presence of two coupled oscillators, is described. When the benzyldimethyltetradecylammonium chloride surfactant undergoes an oscillatory mass transfer through a nitromethane liquid membrane, a new liquid layer (phase X) appears between the membrane and the acceptor phase. Kinetic analysis provides evidence that the whole system is composed of two coupled oscillators with diffusion-mediated physical coupling. The first component oscillator (based on nitromethane) of lower frequency delivers the driving material to the second one (phase X-based oscillator) leading to additional higher frequency oscillations. A new molecular mechanism is proposed for interpreting the experimental observations. The results might enhance understanding of intercellular communication in biology, where periodic signalling is more efficient than any other type of signalling mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brian, P. L. T. (1971). Effect of Gibbs adsorption on Marangoni instability. AIChE Journal, 17, 765–772. DOI: 10.1002/aic.690170403.

    Article  CAS  Google Scholar 

  • Cussler, E. L. (1995). Diffusion: Mass transfer in fluid systems. Cambridge: UK: Cambridge University Press.

    Google Scholar 

  • Epstein, I. R., & Pojman, J. A. (1998). An introduction to non-linear chemical dynamics. New York, NY, USA: Oxford University Press.

    Google Scholar 

  • Goldbeter, A. (1996). Biochemical oscillations and cellular rhythms. Cambridge: UK: Cambridge University Press.

    Book  Google Scholar 

  • Gray, P., & Scott, S. K. (1990). Chemical oscillations and instabilities: Non-linear chemical kinetics. New York, NY, USA: Oxford University Press.

    Google Scholar 

  • Hennenberg, M., Bisch, P. M., Vignes-Adler, M., & Sanfeld, A. (1979). Mass transfer, Marangoni effect, and instability of interfacial longitudinal waves: I. Diffusional exchanges. Journal of Colloid and Interface Science, 69, 128–137. DOI: 10.1016/0021-9797(79)90087-0.

    Article  CAS  Google Scholar 

  • Ikezoe, Y., Ishizaki, S., Yui, H., Fujinami, M., & Sawada, T. (2004). Direct observation of chemical oscillation at a water/nitrobenzene interface with a sodium-alkyl-sulfate system. Analytical Sciences, 20, 435–440. DOI: 10.2116/analsci.20.435.

    Article  CAS  Google Scholar 

  • Kovalchuk, N. M., & Vollhardt, D. (2006). Marangoni instability and spontaneous non-linear oscillations produced at liquid interfaces by surfactant transfer. Advances in Colloid Interface Science, 120, 1–31. DOI: 10.1016/j.cis.2006.01.001.

    Article  CAS  Google Scholar 

  • Kovalchuk, N. M., & Vollhardt, D. (2007). Instability and spontaneous oscillations by surfactant transfer through a liquid membrane. Colloids and Surfaces A: Physicochemical Engineers Aspects, 309, 231–239. DOI: 10.1016/j.colsurfa.2006.11.040.

    Article  CAS  Google Scholar 

  • Larter, R. (1990). Oscillations and spatial nonuniformities in membranes. Chemical Reviews, 90, 355–381. DOI: 10.1021/cr00100a002.

    Article  CAS  Google Scholar 

  • Lavabre, D., Pradines, V., Micheau, J. C., & Pimienta, V. (2005). Periodic Marangoni instability in surfactant (CTAB) liquid/liquid mass transfer. The Journal of Physical Chemistry B, 109, 7582–7586. DOI: 10.1021/jp045197m.

    Article  CAS  Google Scholar 

  • Marcus, Y. (1977). Introduction to liquid state chemistry. London, UK: Wiley.

    Google Scholar 

  • Ostrovsky, M. V., & Ostrovsky, M. J. (1983). Dynamic interfacial tension in binary systems and spontaneous pulsation of individual drops by their dissolution. Journal of Colloid and Interface Science, 93, 392–401. DOI: 10.1016/0021-9797(83)90422-8.

    Article  CAS  Google Scholar 

  • Pimienta, V., Etchenique, R., & Buhse, T. (2001). On the origin of electrochemical oscillations in the picric acid/CTAB two-phase system. The Journal of Physical Chemistry A, 105, 10037–10044. DOI: 10.1021/jp013350w.

    Article  CAS  Google Scholar 

  • Płocharska-Jankowska, E., Szpakowska, M., Mátéfi-Tempfli, S., & B. Nagy, O. (2005). On the possibility of molecular recognition of taste substances studied by Gábor analysis of oscillations. Biophysical Chemistry, 114, 85–93. DOI: 10.1016/j.bpc.2004.10.004.

    Article  Google Scholar 

  • Płocharska-Jankowska, E., Szpakowska, M., Mátéfi-Tempfli, S. & B. Nagy, O. (2006). A new approach to the spectral analysis of liquid membrane oscillators by Gábor transformation. The Journal of Physical Chemistry B, 110, 289–294. DOI: 10.1021/jp0557870.

    Article  Google Scholar 

  • Rastogi, R. P., & Srivastava, R. C. (2001). Interface-mediated oscillatory phenomena. Advances in Colloid and Interface Science, 93, 1–75. DOI: 10.1016/s0001-8686(00)00037-3.

    Article  CAS  Google Scholar 

  • Reichardt, C. (1979). Solvent effects in organic chemistry. Weinheim, Germany: Verlag Chemie.

    Google Scholar 

  • Sternling, C. V., & Scriven, L. E. (1959). Interfacial turbulence: Hydrodynamic instability and Marangoni effect. AIChE Journal, 5, 514–520. DOI: 10.1002/aic.690050421.

    Article  CAS  Google Scholar 

  • Suzuki, T., & Kawakubo, T. (1992). Convective instability and electric potential oscillation in a water-oil-water system. Biophysical Chemistry, 45, 153–159. DOI: 10.1016/0301-4622(92)87007-6.

    Article  CAS  Google Scholar 

  • Szpakowska, M., Czaplicka, I., Szwacki, J., & B. Nagy, O. (2002). Oscillatory phenomena in systems with bulk liquid membranes. Chemical Papers, 56, 20–23.

    CAS  Google Scholar 

  • Szpakowska, M., Czaplicka, I., Płocharska-Jankowska, E., & B. Nagy, O. (2003). Contribution to the mechanism of liquid membrane oscillators involving cationic surfactant. Journal of Colloid and Interface Science, 261, 451–455. DOI: 10.1016/s0021-9797(03)00080-8.

    Article  CAS  Google Scholar 

  • Szpakowska, M., Płocharska-Jankowska, E., & B. Nagy, O. (2005). On the new possibility of applying oscillating liquid membrane systems for molecular recognition substances responsible for taste. Desalination, 173, 61–67. DOI: 10.1016/j.desal.2004.06.209.

    Article  CAS  Google Scholar 

  • Szpakowska, M., Magnuszewska, A., & Płocharska-Jankowska, E. (2006a). Possibility of discrimination of sour substances by liquid membrane oscillators. Desalination, 198, 353–359. DOI: 10.1016/j.desal.2006.04.003.

    Article  CAS  Google Scholar 

  • Szpakowska, M., Czaplicka, I., & B. Nagy, O. (2006b). Mechanism of four-phase liquid membrane oscillator containing hexadecyltrimethylammonium bromide. The Journal of Physical Chemistry A, 110, 7286–7292. DOI: 10.1021/jp057349z.

    Article  CAS  Google Scholar 

  • Szpakowska, M., Magnuszewska, A., & B. Nagy, O. (2008). Mechanism of nitromethane liquid membrane oscillator containing sodium oleate. Journal of Colloid and Interface Science, 325, 494–499. DOI: 10.1016/j.jcis.2008.05.059.

    Article  CAS  Google Scholar 

  • Szpakowska, M., Płocharska-Jankowska, E., & B. Nagy, O. (2009). Molecular mechanism and chemical kinetic description of nitrobenzene liquid membrane oscillator containing benzyldimethyltetradecylammonium chloride surfactant. The Journal of Physical Chemistry B, 113, 15503–15512. DOI: 10.1021/jp9066873.

    Article  CAS  Google Scholar 

  • Tatsuno, Y., Kozuru, T., Yoshida, Y., & Maeda, K. (2012). Propagation and synchronization of potential oscillations in multiple liquid membrane systems. Analytical Science, 28, 1145–1151. DOI: 10.2116/analsci.28.1145.

    Article  CAS  Google Scholar 

  • Toko, K., Yoshikawa, K., Tsukiji, M., Nosaka, M., & Yamafuji, K. (1985). On the oscillatory phenomenon in an oil/water interface. Biophysical Chemistry, 22, 151–158. DOI: 10.1016/0301-4622(85)80037-5.

    Article  CAS  Google Scholar 

  • Weast, R. C., Astle, M. J., & Beyer, W. H. (1984). CRC handbook of chemistry and physics (64th ed.). Boca Ration, FL, USA: CRC Press.

    Google Scholar 

  • Yoshikawa, K., & Matsubara, Y. (1983). Spontaneous oscillation of pH and electric potential in an oil-water system. Journal of the American Chemical Society, 105, 5967–5969. DOI: 10.1021/ja00357a001.

    Article  CAS  Google Scholar 

  • Yoshikawa, K., Shoji, M., Nakata, S., Maeda, S., & Kawakami, H. (1988). An excitable liquid membrane possibly mimicking the sensing mechanism of taste. Langmuir, 4, 759–762. DOI: 10.1021/la00081a046.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Szpakowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szpakowska, M., Płocharska-Jankowska, E. & Nagy, O.B. New bulk liquid membrane oscillator composed of two coupled oscillators with diffusion-mediated physical coupling. Chem. Pap. 69, 1176–1186 (2015). https://doi.org/10.1515/chempap-2015-0126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0126

Keywords

Navigation