Skip to main content
Log in

Enzymatic sensor of putrescine with optical oxygen transducer — mathematical model of responses of sensitive layer

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A biosensor for putrescine containing a sensing layer with an optical oxygen probe based on ruthenium complex and the enzyme diamine oxidase from pea is described. The diamine oxidase was pre-immobilised on broken micro-beads modified with a ferrofluid. The pre-immobilised enzyme and ruthenium complex were both incorporated into the UV-cured inorganic-organic hybrid polymer ORMOCER® and deposited on a lens to form a sensitive layer of 210 µm in thickness. The sensitivity to the putrescine concentration determined under air saturation was between 3.50 µs L mmol−1 and 4.50 µs L mmol−1 in a hundred experiments conducted intermittently over a one year period. With the oxygen concentration increasing from 10 % to 100 % of DO (dissolved oxygen), the biosensor sensitivity decreased from 6.87 µs L mmol−1 to 0.70 µs L mmol−1 and its dynamic range increased from 0.10 mmol L−1 to 1.75 mmol L−1. To estimate the behaviour of the putrescine sensor in parametric space, a mathematical model of the reaction-transport processes inside the sensing layer was developed. The model revealed the qualitative relations between the sensor analytical features, the characteristics of the sensitive layer and concentrations of substrates. The results of the mathematical modelling may serve as guidelines in the design of optodes for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akin, M., Prediger, A., Yuksel, M., Höpfner, T., Demirkol, D. O., Beutel, S., Timur, S., & Scheper, T. (2011). A new set up for multi-analyte sensing: At-line bio-process monitoring. Biosensors and Bioelectronics, 26, 4532–4537. DOI: 10.1016/j.bios.2011.05.018.

    Article  CAS  Google Scholar 

  • Böka, B., Adányi, N., Virág, D., Sebela, M., & Kiss, A. (2012). Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis, 24, 181–186. DOI: 10.1002/elan.201100419.

    Article  Google Scholar 

  • Brown, J. Q., & McShane, M. J. (2006). Modeling of spherical fluorescent glucose microsensor systems: Design of enzymatic smart tattoos. Biosensors and Bioelectronics, 21, 1760–1769. DOI: 10.1016/j.bios.2005.08.013.

    Article  CAS  Google Scholar 

  • Cai, Y. K., Shinar, R., Zhou, Z. Q., & Shinar, J. (2008). Multi-analyte sensor array based on an organic light emitting diode platform. Sensors and Actuators B: Chemical, 134, 727–735. DOI: 10.1016/j.snb.2008.06.019.

    Article  CAS  Google Scholar 

  • Healey, B. G., Li, L., & Walt, D. R. (1997). Multianalyte biosensors on optical imaging bundles. Biosensors and Bioelectronics, 12, 521–529. DOI: 10.1016/s0956-5663(97)00009-2.

    Article  CAS  Google Scholar 

  • Höber, R., Hitchcock, D. I., Bateman, J.B., Goddard, D. R., & Fenn, W. O. (1946). Physical chemistry of cells and tissues. The Journal of Physical Chemistry, 50, 386–387. DOI: 10.1021/j150448a010.

    Article  Google Scholar 

  • Illanes, A., Altamirano, C., & Wilson, L. (2008). Homogeneous enzyme kinetics. In A. Illanes (Ed.), Enzyme biocatalysis (pp. 129–130). Houten, The Netherlands: Springer. DOI: 10.1007/978-l-4020-8361-7_3.

    Chapter  Google Scholar 

  • Kumar, V., Dooley, D.M., Freeman, H.C., Guss, J. M., Harvey, I., McGuirl, M. A., Wilce, M. C. J., & Zubak, V. M. (1996). Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. Structure, 4, 943–955. DOI: 10.1016/s0969-2126(96)00101-3.

    Article  CAS  Google Scholar 

  • Kuncová, G., & Šandová, M. (2007). Glucose optical sensor for bioreactors [motion picture]. Czech Republic, ©Sanda, s.r.o. https://www.youtube.com/watch?v=NTJwmRK3oZ4 and http://ds-uchp-backup.asuch.cas.cz:5000/fbsharing/ilGRdL0X

    Google Scholar 

  • Li, X. P., & Rosenzweig, Z. (1997). A fiber optic sensor for rapid analysis of bilirubin in serum. Analytica Chimica Acta, 353, 263–273. DOI: 10.1016/s0003-2670(97)87785-9.

    Article  CAS  Google Scholar 

  • Marazuela, M. D., Cuesta, B., Moreno-Bondi, M. C., & Quejido, A. (1997). Free cholesterol fiber-optic biosensor for serum samples with simplex optimization. Biosensors and Bioelectronics, 12, 233–240. DOI: 10.1016/s0956-5663(97)85341-9.

    Article  CAS  Google Scholar 

  • Meškauskas, T., Ivanauskas F., & Laurinavicius, V. (2013). Degradation of substrate and/or product: mathematical modeling of biosensor action. Journal of Mathematical Chemistry, 51, 2491–2502. DOI: 10.1007/s10910-013-0223-y.

    Article  Google Scholar 

  • Mitsubayashi, K., Kon, T., & Hashimoto, Y. (2003). Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber. Biosensors and Bioelectronics, 19, 193–198. DOI: 10.1016/s0956-5663(03)00218-5.

    Article  CAS  Google Scholar 

  • Netrabukkana, R., Lourvanij, K., & Rorrer, G. L. (1996). Diffusion of glucose and glucitol in microporous and mesoporous silicate/aluminosilicate catalysts. Industrial & Engineering Chemistry Research, 35, 458–464. DOI: 10.1021/ie950200x.

    Article  CAS  Google Scholar 

  • Pasic, A., Koehler, H., Klimant, I., & Schaupp, L. (2007). Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sensors and Actuators B: Chemical, 122, 60–68. DOI: 10.1016/j.snb.2006.05.010.

    Article  CAS  Google Scholar 

  • Pierangelli, E., Levin, V. A., Seidenfeld, J., & Marton, L. J. (1981). Putrescine diffusion in cat brain and capillary permeability in rat brain: Relation to CSF putrescine levels in brain tumor patients. European Journal of Cancer, 17, 143–147. DOI: 10.1016/0014-2964(81)90028-1.

    Article  CAS  Google Scholar 

  • Pospiskova, K., Safarik, I., Sebela, M., & Kuncova, G. (2013). Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchimica Acta, 180, 311–318. DOI: 10.1007/s00604-012-0932-0.

    Article  CAS  Google Scholar 

  • Psoma, S. D., van der Wal, P. D., & de Rooij, N. F. (2011). Low fluorescence enzyme matrices based on microfabricated SU-8 films for a phenol micro-biosensor application. Procedia Engineering, 25, 1369–1372. DOI: 10.1016/j.proeng.2011.12.338.

    Article  CAS  Google Scholar 

  • Rassaei, L., Olthuis, W., Tsujimura, S., Sudhöolter, E. J. R., & van den Berg, A. (2014). Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry, 406, 123–137. DOI: 10.1007/s00216-013-7307-1.

    Article  CAS  Google Scholar 

  • Romero, M. R., Baruzzi, A. M., & Garay, F. (2012). Mathematical modeling and experimental results of a sandwich-type amperometric biosensor. Sensors and Actuators B: Chemical, 162, 284–291. DOI: 10.1016/j.snb.2011.12.079.

    Article  CAS  Google Scholar 

  • Scully, P. J., Betancor, L., Bolyo, J., Dzyadevych, S., Guisan, J. M., Fernández-Lafuente, R., Jaffrezic-Renault, N., Kuncová, G., Matějec, V., O’Kennedy, B., Podrazky, O., Rose, K., Sasek, L., & Young, J. S. (2011). Optical fibre biosensors using enzymatic transducers to monitor glucose. Measurement Science and Technology, 18, 3177–3186. DOI: 10.1088/0957-0233/18/10/s20.

    Article  Google Scholar 

  • Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 21–25. DOI: 10.4103/2229-5186.79345.

    Article  Google Scholar 

  • Steiner, M. S., Duerkop, A., & Wolfbeis, O. S. (2011). Optical methods for sensing glucose. Chemical Society Reviews, 40, 4805–4839. DOI: 10.1039/c1cs15063d.

    Article  CAS  Google Scholar 

  • Stikoniene, O., Ivanauskas, F., & Laurinavicius, V. (2010). The influence of external factors on the operational stability of the biosensor response. Talanta, 81, 1245–1249. DOI: 10.1016/j.talanta.2010.02.016.

    Article  CAS  Google Scholar 

  • Wang, X. D., & Wolfbeis, O. S. (2014). Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chemical Society Reviews, 43, 3666–3761. DOI: 10.1039/c4cs00039k.

    Article  CAS  Google Scholar 

  • Wolfbeis, O. S. (1991). Optical sensing based on analyte recognition by enzymes, carriers and molecular interactions. Analytica Chimica Acta, 250, 181–201. DOI: 10.1016/0003-2670(91)85071-y.

    Article  CAS  Google Scholar 

  • Wu, X. J., & Choi, M. M. F. (2003). Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Analytical Chemistry, 75, 4019–4027. DOI: 10.1021/ac020736+.

    Article  CAS  Google Scholar 

  • Wu, X. J., & Choi, M. M. F. (2004). Spongiform immobilization architecture of ionotropy polymer hydrogel coentrapping alcohol oxidase and horseradish peroxidase with octadecylsilica for optical biosensing alcohol in organic solvent. Analytical Chemistry, 76, 4279–4285. DOI: 10.1021/ac049799d.

    Article  CAS  Google Scholar 

  • Wu, X. J., Choi, M. M. F., Chen, C. S., & Wu, X. M. (2007). On-line monitoring of methanol in n-hexane by an organic-phase alcohol biosensor. Biosensors and Bioelectronics, 22, 1337–1344. DOI: 10.1016/j.bios.2006.06.002.

    Article  CAS  Google Scholar 

  • Xiao, D., & Choi, M. M. F. (2002). Aspartame optical biosensor with bienzyme-immobilized eggshell membrane and oxygen-sensitive optode membrane. Analytical Chemistry, 74, 863–870. DOI: 10.1021/ac001097a.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Maixnerová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maixnerová, L., Horvitz, A., Kuncová, G. et al. Enzymatic sensor of putrescine with optical oxygen transducer — mathematical model of responses of sensitive layer. Chem. Pap. 69, 158–166 (2015). https://doi.org/10.1515/chempap-2015-0041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0041

Keywords

Navigation