Skip to main content
Log in

Escherichia coli membrane proton conductance and proton efflux depend on growth pH and are sensitive to osmotic stress

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The dependence of Escherichia coli membrane H+ conductance (Gm H+) with a steady-state pH in the presence and absence of an external source of energy (glucose) was studied, when cells were grown under anaerobic and aerobic conditions, with an assay pH of 7.0. Energy-dependent H+ efflux by intact cells growing at pH of 4.5–7.5 was also measured. The elevated H+ conductance and lowered H+ flux were shown for cells growing in acidic pH and under anaerobic conditions, when bacteria were fermenting glucose. The atp mutant, which is deprived of the F0F1-adenosine triphosphatase, had less Gm H+ independent of growth conditions. In contrast with wild-type or precursor strain, a remarkable difference in Gm H+ for atp mutant was observed between aerobic and anerobic conditions; such a difference was significant at pH 4.5. These results could indicate distinguishing pathways determining Gm H+ under anaerobic conditions after the fermentation of glucose at different pH and an input of the F0F1-adenosine triphosphatase in Gm H+. In addition, the effect of osmotic stress was demonstrated with grown cells. Gm H+ and H+ efflux both were increased after hyperosmotic stress at pH 7.5, and these changes were inhibited by N,N′-dicyclohexylcarbodiimide, whereas these changes were lower in atp mutant. A role of the F0F1-adenosine triphosphatase in osmo-sensitivity of bacteria was confirmed under fermentative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholls, D. G. (1997) The non-ohmic proton leak—25 years on. Biosci. Rep. 17, 251–257.

    Article  PubMed  CAS  Google Scholar 

  2. Akopyan, K., Zakharyan, E., Kirakosyan, G., et al. (2002) Interaction of membrane proton conductivity, membrane and oxidation-reduction potential in Escherichia coli. Biophysics 47, 985–988.

    Google Scholar 

  3. Visser, R. G. E., Hellingwerf K. J., and Konings, W. N. (1984) The protein composition of the cytoplasmic membrane of aerobically and anaerobically grown Escherichia coli. J. Bioenerg. Biomembr. 16, 295–307.

    Article  PubMed  CAS  Google Scholar 

  4. Schemidt, R. A., Qu, J., Williams, J. R., and Brusilow, W. S. (1998) Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli J. Bacteriol. 180, 3205–3208.

    PubMed  CAS  Google Scholar 

  5. Arikado, E., Ishihara, H., Ehara, T., et al. (1999) Enzyme level of enterococcal F1F0-ATPase is regulated by pH at the step of assembly. Eur. J. Biochem. 259, 262–265.

    Article  PubMed  CAS  Google Scholar 

  6. Blankenborn, D., Phillips, J., and Slonczewski, J. L. (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J. Bacteriol. 181, 2209–2216.

    Google Scholar 

  7. Williams, R. J. P. (2002) The problem of proton transfer in membranes. J. Theor. Biol. 219, 389–396.

    Article  PubMed  CAS  Google Scholar 

  8. Yohannes, E., Barnhart, D. M., and Slonczewski, J. L. (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol. 186, 192–199.

    Article  PubMed  CAS  Google Scholar 

  9. Riondet, C., Cachon, R., Wache, Y., et al. (1999) Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential. Eur. J. Biochem. 262, 595–599.

    Article  PubMed  CAS  Google Scholar 

  10. Trchounian, A. (2004) Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem. Biophys. Res. Commun. 315, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  11. Maloney, P. C. (1979) Membrane H+ conductance of Streptococcus lactis. J. Bacteriol. 140, 197–206.

    PubMed  CAS  Google Scholar 

  12. Bond, D. R. and Russell, J. B. (2000) Proton-motive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion. Microbiology 146, 687–694.

    PubMed  CAS  Google Scholar 

  13. Dosch, D. C., Helmer, G. L., Sutton, S. H., et al. (1991) Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake of potassium. J. Bacteriol. 173, 687–696.

    PubMed  CAS  Google Scholar 

  14. Trchounian, A. and Vassilian, A. (1994) Relationship between the F0F1-ATPase and the K+-transport system within the membrane of anaerobically grown Escherichia coli. N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity in mutants with defects in K+-transport. J. Bionerg. Biomembr. 26, 563–571.

    Article  CAS  Google Scholar 

  15. Trchoinian, A. A., Ogandjanian, E. S., and Bagramyan, K. A. (1996) The nature of K+ uptake systems participating in H+-K+-exchange and molecular hydrogen production in anaerobically growth Escherichia coli. Membr. Cell. Biol. 9, 515–528.

    Google Scholar 

  16. Mnatsakanyan, N., Bagramyan, K., Vassilian, A., et al. (2002) F0 cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Biosci. Rep. 22 421–430.

    Article  PubMed  CAS  Google Scholar 

  17. Trchounian, A., Ohanjanyan, Y., Bagramyan, K., et al. (1998) Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration. Biosci. Rep. 18, 143–154.

    Article  PubMed  CAS  Google Scholar 

  18. Franklin, M. J., Brusilow, W. S., and Woodbury, D. J. (2004) Determination of proton flux and conductance at pH 6.8 through single Fo sectors from Escherichia coli. Biophys. J. 87, 3594–3599.

    Article  PubMed  CAS  Google Scholar 

  19. Ahmed, S. and Booth, I. R. (1983) The use of valinomycin, nigericin and trichlorocarbanilide in control of the proton motive force in Escherichia coli cells. Biochem. J. 212, 105–112.

    PubMed  CAS  Google Scholar 

  20. Trchounian, A., Ohandjanian, E., and Vanian, P. (1994) Osmosensitivity of the 2H+/K+-exchange and the H+-F0F1-ATPase in anaerobically grown Escherichia coli. Curr. Microbiol. 29, 187–191.

    Article  CAS  Google Scholar 

  21. Presser, K. A., Ratkowsky, A. D., and Ross, T. (1997) Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol. 63, 2355–2360.

    PubMed  CAS  Google Scholar 

  22. Maurer, L. M., Yohannes, E., Bondurant, S. S., et al. (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 187, 304–319.

    Article  PubMed  CAS  Google Scholar 

  23. Trchounian, A. and Kobayashi, H. (1999) Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at a low pH. FEBS Lett. 447, 144–148.

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi, H., Saito, H., and Kakegawa, T. (2000) Bacterial strategies to inhabit acidic environments. J. Gen. Appl. Microbiol. 46, 235–243.

    Article  PubMed  CAS  Google Scholar 

  25. Zakharyan, E. and Trchounian, A. (2001) K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux. FEMS Microbiol. Lett. 204, 61–64.

    Article  PubMed  CAS  Google Scholar 

  26. Valiyaveetil, F., Hermolin, J., and Fillingame, R. (2002) pH dependent inactivation of solubilized F1F0 ATP synthase by dicyclohexylcarbodiimide: pK(a) of detergent unmasked aspartyl-61 in Escherichia coli subunit c. Biochim. Biophys. Acta 1553, 296–301.

    Article  PubMed  CAS  Google Scholar 

  27. Machado, M. C., Lopez, C. S., Heras, H., and Rivas, E. A. (2004) Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch. Biochem. Biophys. 422, 61–70.

    Article  PubMed  CAS  Google Scholar 

  28. Roesser, M. and Muller, V. (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ. Microbiol. 3, 743–754.

    Article  PubMed  CAS  Google Scholar 

  29. Futai, M., Omote, H., and Maeda, M. (1994) Osmoenzyme-H+-ATP synthase: catalysis and H+ translocation. Tanpakushitsu Kakusan Koso 39, 1141–1151 [in Japanese].

    PubMed  CAS  Google Scholar 

  30. Trchounian, A. (1990) H+-K+ pump of E. coli. Biophysics 35, 889–890 [in Russian].

    Google Scholar 

  31. Trchounian, A. and Kobayashi, H. (1999) Fermenting Escherichia coli is able to grow in media of high osmolarity, but is sensitive to the presence of sodium ion. Curr. Microbiol. 39, 109–114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Trchounian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akopyan, K., Trchounian, A. Escherichia coli membrane proton conductance and proton efflux depend on growth pH and are sensitive to osmotic stress. Cell Biochem Biophys 46, 201–208 (2006). https://doi.org/10.1385/CBB:46:3:201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:46:3:201

Index Entries

Navigation