Skip to main content
Log in

Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although coenzyme Q10 (CoQ10) is a component of the oxidative phosphorylation process in mitochondria that converts the energy in carbohydrates and fatty acids into ATP to drive cellular machinery and synthesis, its effect in type I diabetes is not clear. We have studied the effect of 4 wk of treatment with CoQ10 (10 mg/kg, ip, daily) in streptozotocin (STZ)-induced (40 mg/kg, iv in adult rats) type I diabetes rat models. Treatment with CoQ10 produced a significant decrease in elevated levels of glucose, cholesterol, triglycerides, very-low-density lipoprotein, lowdensity lipoprotein, and atherogenic index and increased high-density lipoprotein cholesterol levels in diabetic rats. CoQ10 treatment significantly decreased the area under the curve over 120 min for glucose in diabetic rats, without affecting serum insulin levels and the area under the curve over 120 min for insulin in diabetic rats. CoQ10 treatment also reduced lipid peroxidation and increased antioxidant parameters like superoxide dismutase, catalase, and glutathione in the liver homogenates of diabetic rats. CoQ10 also lowered the elevated blood pressure in diabetic rats. In conclusion, CoQ10 treatment significantly improved deranged carbohydrate and lipid metabolism of experimental chemically induced diabetes in rats. The mechanism of its beneficial effect appears to be its antioxidant property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature 414, 813–820 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. M. Brownlee, Negative consequence of glycation, Metabolism 49, 9–13 (2000).

    PubMed  CAS  Google Scholar 

  3. P. Rosen, P. P. Nawroth, G. King, et al., The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MCBN, the American Diabetic Association, and the German diabetic society, Diabetes 17, 189–212 (2001).

    Article  CAS  Google Scholar 

  4. I. C. West, Radicals and oxidative stress in diabetes, Diabetes Med. 17, 171–180 (2000).

    Article  CAS  Google Scholar 

  5. D. Giuglian, A. Ceriello, and G. Paolisso, Diabetes mellitus, hypertension and cardiovascular disease. Which role for oxidative stress? Metabolism 44, 363–368 (1995).

    Article  Google Scholar 

  6. A. K. Mohamed, A. Bierhaus, S. Schiekofer, et al., The role of oxidative stress and NFκB activation in late diabetic complications, Biofactors 10, 157–167 (1999).

    PubMed  CAS  Google Scholar 

  7. C. D. A. Stehouwer and N. C. Schaper, The pathogenesis of vascular complications of diabetes mellitus. One voice or many? Eur. J. Clin. Invest. 26, 533–543 (1996).

    Article  Google Scholar 

  8. M. Yaqoob, A. W. Patrick, P. McClelland, et al., Relationship between markers of endothelial dysfunction, oxidant injury and tubular damage in patients with insulin-dependent diabetes mellitus, Clin. Sci. 85, 557–562 (1993).

    PubMed  CAS  Google Scholar 

  9. S. R. Maxwell and H. Thomson, Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes, mellitus, Eur. J. Clin. Invest. 27, 484–490 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. S. A. Santini and G. Marra, Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM, Diabetes 46, 1853–1858 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. L. ErnsteerL and G. Dallner, Biochemical, physiological and medical aspects of ubiquinone function, Biochem. Biophys. Acta. 1271, 195–204 (1995).

    Google Scholar 

  12. J. Kucharska, Z. Braunova, I. O.uliena, et al., Deficit of coenzyme Q10 in heart and liver mitochondria of rats with Streptozotocin induced diabetes, Physiol. Res. 49, 411–418 (2000).

    PubMed  CAS  Google Scholar 

  13. R. Stocker and B. Frei, Endogenous antioxidant defenses in human blood plasma, in Oxidants and Antioxidants, H. Sies, ed., Academic, London, pp. 213–243 (1991).

    Google Scholar 

  14. H. Ohkawa, N. Ohis, and K. Yagi, Assay of lipid peroxides in animal tissues by thiobarbituric reaction, Anal. Biochem. 95 351 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. H. Mishra, and I. Frodvich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247, 31–70 (1972).

    Google Scholar 

  16. H. Aebi, Catalase in vitro. Methods in Enzymology, L. Packer, ed., Academic, New York Vol. 105, p. 121–126 (1984).

    Google Scholar 

  17. E. Beutler and B. Kelly, The effect of sodium on RBC glutathione, J. Experimentia 19, 96 (1963).

    Article  CAS  Google Scholar 

  18. O. Lowery, N. Rosenbrough, A. Farr, et al., Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265 (1951).

    Google Scholar 

  19. R. Stocker and B. Frei, Endogenous antioxidant defenses in human blood plasma, in Oxidative Stress: Oxidants and Antioxidants, H. Sies, ed., Academic, London, pp. 213–243 (1991).

    Google Scholar 

  20. B. Rodrigues, R. K. Goyal, and J. H. McNeill, Effect of hydralazine on STZ-induced diabetic rats: prevention of hyerlipidenia and improvement in cardiac function, J. Pharmacol. Exp. Ther. 237, 292–299 (1986).

    PubMed  CAS  Google Scholar 

  21. R. B. Singh, S. N. Shinde, R. K. Chopra, et al., Effect of CoQ10 on experimental atherosclerosis and chemical composition and quality of atheroma in rabbits, Atherosclerosis 148, 275–282 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. H. Esterbauer, J. Gebicki, and G. Jurgens, The role of lipid peroxidation and antioxidants in oxidative modification of LDL, Free Radical Biol. Med. 13, 341–390 (1992).

    Article  CAS  Google Scholar 

  23. S. M. Lynch, J. D. Morrow, L. J. Roberts, et al., Formation of non-cyclo oxygenase derived prostanoids, (F2-isoprostares) in plasma and low-density lipoprotein exposed to oxidative stress in vivo, J. Clin. Invest. 93, 998–1004 (1994).

    PubMed  CAS  Google Scholar 

  24. A. Rabinovitch, W. L. Suarez-Pinzon, K. Strynadka, et al., Human pancreatic islet β-cell destruction by cytokines involves oxygen free radicals and aldehyde production, J. Clin. Endocri. Metab. 81, 3197–3202 (1996).

    Article  CAS  Google Scholar 

  25. J. Ludvigsson, Intervention at diagnosis of type I diabetes using antoxidants of photopheresis, Diabetes Metab. Rev. 9, 329–336 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. S. Suzuki, Y. Hinkio, and K. Komatu, Oxidative dasmage to mitochondrial DNA and its relationship to diabetes complications, Diabetes Res. Clin. Pract. 45, 161–168 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. D. Steinberg, S. Parthasarathy, T. E. Carew, et al., Beyond cholesterol: modification of low-density lipoprotein that increase to atherogenicity, N. Engl. J. Med. 320, 915–924 (1989).

    Article  PubMed  CAS  Google Scholar 

  28. P. T. Shih, M. J. Elices, Z. T. Fang, et al., Minimally, modified low density lipoprotein induces monocyte adhesion to endothelial connecting segment I by activating B1-integrin, J. Clin. Invest. 103, 613–625 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. R. B. Singh, M. A. Niaz, S. S. Rastogi, et al., Effect of hydrosoluble CoQ10 on blood pressure and insulin resistance in hypertensive patients with coronary artery disease, J. Hum. Hypertens. 13, 203–208 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modi, K., Santani, D.D., Goyal, R.K. et al. Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biol Trace Elem Res 109, 25–33 (2006). https://doi.org/10.1385/BTER:109:1:025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:109:1:025

Index Entries

Navigation