Skip to main content

Antioxidant Effects of Trehalose in an Experimental Model of Type 2 Diabetes

  • Chapter
  • First Online:
Natural Products and Human Diseases

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertoluci, M. C., Salles, J. E. N., Silva-Nunes, J., Pedrosa, H. C., Moreira, R. O., da Silva Duarte, R. M. C., et al. (2020). Portuguese-Brazilian evidence-based guideline on the management of hyperglycemia in type 2 diabetes mellitus. Diabetology & Metabolic Syndrome, 12, 1–30.

    Article  Google Scholar 

  2. Li, Y.-Y., Yang, X.-F., Gu, H., Snellingen, T., Liu, X.-P., & Liu, N.-P. (2018). The relationship between insulin resistance/β-cell dysfunction and diabetic retinopathy in Chinese patients with type 2 diabetes mellitus: the Desheng Diabetic Eye Study. International Journal of Ophthalmology, 11(3), 493.

    PubMed  PubMed Central  Google Scholar 

  3. Rehman, K., & Akash, M. S. H. (2017). Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: How are they interlinked? Journal of Cellular Biochemistry, 118(11), 3577–3585.

    Article  CAS  PubMed  Google Scholar 

  4. Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews, 23(5), 599–622.

    Article  CAS  PubMed  Google Scholar 

  6. Oguntibeju, O. O. (2019). Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. International Journal of Physiology, Pathophysiology and Pharmacology, 11(3), 45–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, C., Shi, X., Shen, Q., Guo, C., Hou, Z., & Zhang, J. (2018). Hot topics and challenges of regenerative nanoceria in application of antioxidant therapy. Journal of Nanomaterials, 2018, 1–12.

    Google Scholar 

  8. Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Karimian, M. S., Majeed, M., et al. (2017). Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology, 25(1), 25–31.

    Article  CAS  PubMed  Google Scholar 

  9. Yaribeygi, H., Mohammadi, M. T., & Sahebkar, A. (2018). Crocin potentiates antioxidant defense system and improves oxidative damage in liver tissue in diabetic rats. Biomedicine & Pharmacotherapy, 98, 333–337.

    Article  CAS  Google Scholar 

  10. Elbein, A. D., Pan, Y., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: A multifunctional molecule. Glycobiology, 13(4), 17R–27R.

    Article  CAS  PubMed  Google Scholar 

  11. Figueroa, C. M., Feil, R., Ishihara, H., Watanabe, M., Kölling, K., Krause, U., et al. (2016). Trehalose 6–phosphate coordinates organic and amino acid metabolism with carbon availability. The Plant Journal, 85(3), 410–423.

    Article  CAS  PubMed  Google Scholar 

  12. Eleutherio, E., Panek, A., De Mesquita, J. F., Trevisol, E., & Magalhães, R. (2015). Revisiting yeast trehalose metabolism. Current Genetics, 61(3), 263–274.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X., Du, Y., & Yu, D. (2019). Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana. Journal of Integrative Plant Biology, 61(4), 509–527.

    Article  CAS  PubMed  Google Scholar 

  14. Hosseinpour-Moghaddam, K., Caraglia, M., & Sahebkar, A. (2018). Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. Journal of Cellular Physiology, 233(9), 6524–6543.

    Article  CAS  PubMed  Google Scholar 

  15. Lin, C. F., Kuo, Y. T., Chen, T. Y., & Chien, C. T. (2016). Quercetin-rich guava (Psidium guajava) juice in combination with Trehalose reduces autophagy, apoptosis and Pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules, 21(3), 334.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mizote, A., Yamada, M., Yoshizane, C., Arai, N., Maruta, K., Arai, S., et al. (2016). Daily intake of trehalose is effective in the prevention of lifestyle-related diseases in individuals with risk factors for metabolic syndrome. Journal of Nutritional Science and Vitaminology, 62(6), 380–387.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshizane, C., Mizote, A., Yamada, M., Arai, N., Arai, S., Maruta, K., et al. (2017). Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects. Nutrition Journal, 16(1), 9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stachowicz, A., Wiśniewska, A., Kuś, K., Kiepura, A., Gębska, A., Gajda, M., et al. (2019). The influence of Trehalose on atherosclerosis and hepatic Steatosis in Apolipoprotein E knockout mice. International Journal of Molecular Sciences, 20(7), 1552.

    Article  CAS  PubMed Central  Google Scholar 

  19. Sahebkar, A., Hatamipour, M., & Tabatabaei, S. A. (2019). Trehalose administration attenuates atherosclerosis in rabbits fed a high-fat diet. Journal of Cellular Biochemistry, 120(6), 9455–9459.

    Article  CAS  PubMed  Google Scholar 

  20. Khalifeh, M., Barreto, G. E., & Sahebkar, A. (2019). Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. British Journal of Pharmacology, 176(9), 1173–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Portbury, S. D., Hare, D. J., Sgambelloni, C., Perronnes, K., Portbury, A. J., Finkelstein, D. I., et al. (2017). Trehalose improves cognition in the transgenic Tg2576 mouse model of Alzheimer’s disease. Journal of Alzheimer’s Disease, 60, 549–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khalifeh, M., Read, M. I., Barreto, G. E., & Sahebkar, A. (2020). Trehalose against Alzheimer’s disease: Insights into a potential therapy. BioEssays, 42(8), e1900195.

    Article  PubMed  Google Scholar 

  23. He, Q., Koprich, J. B., Wang, Y., Yu, W.-B., Xiao, B.-G., Brotchie, J. M., et al. (2016). Treatment with Trehalose prevents Behavioral and neurochemical deficits produced in an AAV α-Synuclein rat model of Parkinson’s disease. Molecular Neurobiology, 53(4), 2258–2268.

    Article  CAS  PubMed  Google Scholar 

  24. Yaribeygi, H., Yaribeygi, A., Sathyapalan, T., & Sahebkar, A. (2019). Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(3), 2214–2218.

    Article  Google Scholar 

  25. Mizunoe, Y., Kobayashi, M., Sudo, Y., Watanabe, S., Yasukawa, H., Natori, D., et al. (2018). Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biology, 15, 115–124.

    Article  CAS  PubMed  Google Scholar 

  26. Alvarez-Peral, F. J., Zaragoza, O., Pedreno, Y., & Argüelles, J.-C. (2002). Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology, 148(8), 2599–2606.

    Article  CAS  PubMed  Google Scholar 

  27. Tang, Q., Zheng, G., Feng, Z., Chen, Y., Lou, Y., Wang, C., et al. (2017). Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death & Disease, 8(10), e3081–e3081.

    Article  Google Scholar 

  28. Echigo, R., Shimohata, N., Karatsu, K., Yano, F., Kayasuga-Kariya, Y., Fujisawa, A., et al. (2012). Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. Journal of Translational Medicine, 10(1), 80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cade, W. T. (2008). Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Physical Therapy, 88(11), 1322–1335.

    Article  PubMed  PubMed Central  Google Scholar 

  30. King, G. L., & Loeken, M. R. (2004). Hyperglycemia-induced oxidative stress in diabetic complications. Histochemistry and Cell Biology, 122(4), 333–338.

    Article  CAS  PubMed  Google Scholar 

  31. Dos Santos, J. M., Tewari, S., & Mendes, R. H. (2019). The role of oxidative stress in the development of diabetes mellitus and its complications. Hindawi.

    Book  Google Scholar 

  32. Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Opara, E. C., Abdel-Rahman, E., Soliman, S., Kamel, W. A., Souka, S., Lowe, J. E., et al. (1999). Depletion of total antioxidant capacity in type 2 diabetes. Metabolism, 48(11), 1414–1417.

    Article  CAS  PubMed  Google Scholar 

  34. Godin, D. V., Wohaieb, S. A., Garnett, M. E., & Goumeniouk, A. D. (1988). Antioxidant enzyme alterations in experimental and clinical diabetes. Molecular and Cellular Biochemistry, 84(2), 223–231.

    Article  CAS  PubMed  Google Scholar 

  35. Ceriello, A., & Testa, R. (2009). Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes Care, 32(suppl 2), S232–S236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rajendiran, D., Packirisamy, S., & Gunasekaran, K. (2018). A review on role of antioxidants in diabetes. Asian Journal of Pharmaceutical and Clinical Research, 11(2), 48–53.

    Article  Google Scholar 

  37. Li, C., Miao, X., Li, F., Wang, S., Liu, Q., Wang, Y., et al. (2017). Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy. Oxidative Medicine and Cellular Longevity, 2017, 1–15.

    CAS  Google Scholar 

  38. Lee, H.-J., Yoon, Y.-S., & Lee, S.-J. (2018). Mechanism of neuroprotection by trehalose: Controversy surrounding autophagy induction. Cell Death & Disease, 9(7), 1–12.

    Article  Google Scholar 

  39. Benaroudj, N., & Goldberg, A. L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. Journal of Biological Chemistry, 276(26), 24261–24267.

    Article  CAS  PubMed  Google Scholar 

  40. Oku, K., Kurose, M., Kubota, M., Fukuda, S., Kurimoto, M., Tujisaka, Y., et al. (2005). Combined NMR and quantum chemical studies on the interaction between trehalose and dienes relevant to the antioxidant function of trehalose. The Journal of Physical Chemistry B, 109(7), 3032–3040.

    Article  CAS  PubMed  Google Scholar 

  41. Sun, L., Zhao, Q., Xiao, Y., Liu, X., Li, Y., Zhang, J., et al. (2020). Trehalose targets Nrf2 signal to alleviate d-galactose induced aging and improve behavioral ability. Biochemical and Biophysical Research Communications, 521(1), 113–119.

    Article  CAS  PubMed  Google Scholar 

  42. Mahboob, M., Rahman, M., & Grover, P. (2005). Serum lipid peroxidation and antioxidant enzyme levels in male and female diabetic patients. Singapore Medical Journal, 46(7), 322.

    CAS  PubMed  Google Scholar 

  43. Harris, E. D. (1992). Regulation of antioxidant enzymes 1. The FASEB Journal, 6(9), 2675–2683.

    Article  CAS  PubMed  Google Scholar 

  44. Maritim, A., Sanders, A., & Watkins Iii, J. (2003). Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17(1), 24–38.

    Article  CAS  PubMed  Google Scholar 

  45. Sailaja, Y., Baskar, R., & Saralakumari, D. (2003). The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radical Biology and Medicine, 35(2), 133–139.

    Article  CAS  PubMed  Google Scholar 

  46. Ozkilic, A. C., Cengiz, M., Ozaydin, A., Cobanoglu, A., & Kanigur, G. (2006). The role of N-acetylcysteine treatment on anti-oxidative status in patients with type II diabetes mellitus. Journal of Basic and Clinical Physiology and Pharmacology, 17(4), 245–254.

    Article  CAS  PubMed  Google Scholar 

  47. Matkovics, B., Varga, S. I., Szabo, L., & Witas, H. (1982). The effect of diabetes on the activities of the peroxide metabolism enzymes. Hormone and Metabolic Research, 14(02), 77–79.

    Article  CAS  PubMed  Google Scholar 

  48. Palanduz, S., Ademoğlu, E., Gökkuşu, C., & Tamer, S. (2001). Plasma antioxidants and type 2 diabetes mellitus. Research Communications in Molecular Pathology and Pharmacology, 109(5–6), 309.

    CAS  PubMed  Google Scholar 

  49. Gunawardena, H. P., Silva, R., Sivakanesan, R., Ranasinghe, P., & Katulanda, P. (2019). Poor glycaemic control is associated with increased lipid peroxidation and glutathione peroxidase activity in type 2 diabetes patients. Oxidative Medicine and Cellular Longevity, 2019, 9471697.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kesavulu, M., Giri, R., Rao, B. K., & Apparao, C. (2008). Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes & Metabolism, 26(5), 387.

    Google Scholar 

  51. Şekeroğlu, M. R., Sahin, H., Dülger, H., & Algün, E. (2000). The effect of dietary treatment on erythrocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase, and serum lipid peroxidation in patients with type 2 diabetes mellitus. Clinical Biochemistry, 33(8), 669–674.

    Article  PubMed  Google Scholar 

  52. Tanaka, Y., Tran, P. O. T., Harmon, J., & Robertson, R. P. (2002). A role for glutathione peroxidase in protecting pancreatic β cells against oxidative stress in a model of glucose toxicity. Proceedings of the National Academy of Sciences, 99(19), 12363–12368.

    Article  CAS  Google Scholar 

  53. Welsh, N., Margulis, B., Borg, L. H., Wiklund, H. J., Saldeen, J., Flodström, M., et al. (1995). Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: Implications for the pathogenesis of insulin-dependent diabetes mellitus. Molecular Medicine, 1(7), 806–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suh, K. S., Choi, E. M., Jung, W.-W., Kim, Y. J., Hong, S. M., Park, S. Y., et al. (2017). Deoxyactein protects pancreatic β-cells against methylglyoxal-induced oxidative cell damage by the upregulation of mitochondrial biogenesis. International Journal of Molecular Medicine, 40(2), 539–548.

    Article  CAS  PubMed  Google Scholar 

  55. Bandeira Sde, M., Guedes Gda, S., da Fonseca, L. J., Pires, A. S., Gelain, D. P., Moreira, J. C., et al. (2012). Characterization of blood oxidative stress in type 2 diabetes mellitus patients: Increase in lipid peroxidation and SOD activity. Oxidative Medicine and Cellular Longevity, 2012, 819310.

    PubMed  Google Scholar 

  56. Rani, A. J., & Mythili, S. (2014). Study on total antioxidant status in relation to oxidative stress in type 2 diabetes mellitus. Journal of Clinical and Diagnostic Research: JCDR, 8(3), 108.

    PubMed  PubMed Central  Google Scholar 

  57. Kambayashi, Y., Binh, N. T., Asakura, H. W., Hibino, Y., Hitomi, Y., Nakamura, H., et al. (2009). Efficient assay for total antioxidant capacity in human plasma using a 96-well microplate. Journal of Clinical Biochemistry and Nutrition, 44(1), 46–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from the National Institute for Medical Research Development (NIMAD), Tehran, Iran (Grant no: 987820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radbakhsh, S., Ganjali, S., Moallem, S.A., Guest, P.C., Sahebkar, A. (2021). Antioxidant Effects of Trehalose in an Experimental Model of Type 2 Diabetes. In: Sahebkar, A., Sathyapalan, T. (eds) Natural Products and Human Diseases. Advances in Experimental Medicine and Biology(), vol 1328. Springer, Cham. https://doi.org/10.1007/978-3-030-73234-9_32

Download citation

Publish with us

Policies and ethics