Skip to main content
Log in

Living with heterogeneities in bioreactors

Understanding the effects of environmental gradients on cells

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogene ities, are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C * :

Dissolved oxygen concentration at saturation with air

CFD:

Computational fluid dynamics

CHO:

Chinese hamster ovary

dCO2 :

Dissolved carbon dioxide

dH2 :

Dissolved hydrogen

Di :

Impeller diameter

DO:

Dissolved oxygen concentration

dw:

Dry weight

GFP:

Green fluorescent protein

HGH:

Human growth hormone

k La:

Volumetric oxygen transfer coefficient

N :

Impeller rotation speed

PFR:

Plug-flow reactor

P o :

Power input

Q :

Pump rate

SD:

Scale-down

SDS:

Scale-down system

STR:

Stirred-tank reactor

t c :

Circulation time

TCA:

Tricarboxylic acid

tm :

Mixing time

t MT :

Characteristic time for mass transfer

tO2u :

Characteristic time for oxygen uptake

V :

Volume

’:

Density

μ:

Viscosity

References

  1. Oldshue, J. Y. (1966). Fermentation mixing scale-up technique. Biotechnol. Bioeng. 8, 3–24.

    Google Scholar 

  2. Palomares, L. A. and Ramírez, O. T. (2000) Bioreactor Scale-Down, in The Encyclopedia of Cell Technology, vol. 1 (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 174–183.

    Google Scholar 

  3. Bylund, F., Collet, E., Enfors, S. O., and Larsson, G. (1998) Substrate gradient formation in the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess Eng. 18, 171–180.

    CAS  Google Scholar 

  4. Guillard, F. and Trägardh, C. (1999) Modeling of the performance of industrial bioreactors with a dynamic microenvironmental approach: A critical review. Chem. Eng. Technol. 22, 187–195.

    CAS  Google Scholar 

  5. Palomares, L. A. and Ramírez, O. T. (2000) Bioreactor Scale-Up, in The Encyclopedia of Cell Technology, vol. 1 (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 183–201.

    Google Scholar 

  6. Vlaev, D., Mann, R., Lossev, V., Vlaev, S. D., Zahradnik, J., and Seichter, P. (2000) Macro mixing and Streptomyces fradiae. Modelling oxygen and nutrient segregation in an industrial bioreactor. Trans IChemE part A 78, 354–362.

    CAS  Google Scholar 

  7. Enfors, S.-O., Jahic, M., Rozkov, A., et al. (2001) Physiological responses to mixing in large scale bioreactors. J. Biotechnol. 82, 175–185.

    Google Scholar 

  8. Hristov, H., Mann, R., Lossev, V., Vlaev, S. D., and Seichter, P. (2001) A 3-D analysis of gas-liquid mixing, mass transfer and bioreaction in a stirred bioreactor. Trans IChem E part C 79, 232–241.

    CAS  Google Scholar 

  9. Amanullah, A., Buckland, B. C., and Nienow, A. W. (2004) Mixing in the fermentation and cell culture industries, in Handbook of Industrial Mixing: Science and Practice (Paul, E. L., Atiemo-Obeng, V. A., and Kresta, S. M., eds.), John Wiley & Sons, Hoboken, NJ, pp. 1071–1170.

    Google Scholar 

  10. Doran, P. M. (1993). Design of bioreactors for plant cells and organs, in Advances in Biochemical Engineering/Biotechnology, vol. 48 (Fietcher, A., ed.), Springer-Verlag, Berlin: pp. 115–168.

    Google Scholar 

  11. Marten, M. R., Wenger, K. R., and Khan, S. A. (1997) Rheology, mixing time and regime analysis for a production-scale Aspergillus oryzae fermentation. Proceedings of the 4th International Conference in Bioreactor & Bioprocess Fluid Dynamics”, (Nienow, A. W., ed.), Mechanical Engineering Publications, BurySt. Edmonds, UK, pp. 295–313.

    Google Scholar 

  12. Larsson, G., Törnkvist, M., Stahl-Wernersson, E., Trägardh, C., Noorman, H., and Enfors, S. O. (1996) Substrate gradients in fed-batch bioreactors: origin and consequences. Bioprocess Eng. 14, 281–289.

    CAS  Google Scholar 

  13. Larsson, G. and Törnkvist, M. (1996) Rapid sampling, cell inactivation and evaluation of low extracellular glucose concentrations during fed-batch cultivation. J. Biotechnol. 49, 69–82.

    PubMed  CAS  Google Scholar 

  14. Bylund, F., Guillard, F., Enfors, S., Trägardh, C., and Larsson, G. (1999). Scale down of recombinant protein production: a comparative study of scaling performance. Bioprocess Eng. 20, 377–389.

    CAS  Google Scholar 

  15. Bylund, F., Castan, A., Mikkola, R., Veide, A., and Larsson, G. (2000). Influence of scale-up on the quality of recombinant human growth hormone. Biotechnol. Bioeng. 69, 119–128.

    PubMed  CAS  Google Scholar 

  16. Sinacore, M. S., Charlebois, T. S., Drapeu, D., Leonard, M., Harrison, S., and Adamson, S. R. (2000) Cell stability, in The Encyclopedia of Cell Technology, vol. 1, (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 458–472.

    Google Scholar 

  17. Choi, J. H., Keum, K. C., and Lee, S. Y. (2006) Production of recombinant proteins by high cell-density cultures of Escherichia coli. Chem. Eng. Sci. 61, 876–885.

    CAS  Google Scholar 

  18. Ozturk, S. S. (1996) Engineering challenges in high cell density cell culture systems. Cytotechnol. 22, 3–16.

    Google Scholar 

  19. Reuss, M., Schmalzriedt, S., and Jenne, M. (1994) Structured Modelling of Bioreactors, in Advances in Bioprocess Engineering (Galindo E. and Ramírez, O. T., eds.), Kluwer Academic Press, Dordrecht, The Netherlands, pp. 207–215.

    Google Scholar 

  20. Langheinrich, C., Nienow, A. W., Stevenson, N. C., Enery, A. N., Clayton, T. M., and Slater, N. K. H. (1995) Mixing and oxygen transfer in a large scale animal cell bioreactor, in Biochemical Engineering 3 (Schmid, R. D., ed.) Universität Stuttgart, Stuttgart, pp. 162–164.

    Google Scholar 

  21. Oosterhuis, N. M. G. and Kossen, N. W. F. (1984) Dissolved oxygen concentration profiles in a productionscale bioreactor. Biotechnol. Bioeng. 26, 546–550.

    CAS  PubMed  Google Scholar 

  22. Borys, M. C., Linzer, D. I. H., and Papoutsakis, E. T. (1993) Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by chinese hamster ovary (CHO) cells. Bio/Technology 11, 720–724.

    PubMed  CAS  Google Scholar 

  23. Häggstrom, L. (2000) Cell Metabolism, Animal, in The Encyclopedia of Cell Technology, vol. 1 (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 392–411.

    Google Scholar 

  24. Langheinrich, C. and Nienow, A. W. (1999) Control of pH in large-scale, free suspension animal cell bioreactors: alkali addition and pH excursions. Biotechnol. Bioeng. 66, 171–179.

    PubMed  CAS  Google Scholar 

  25. McDowell, C. Papoutsakis, E. T., and Borys, M. C. (2000) Animal cell Culture, Physiochemical effects of pH, in The Encyclopedia of Cell Technology, vol. 1 (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 63–70.

    Google Scholar 

  26. Amanullah, A., McFarlane, C. M., Emery, A. N., and Nienow, A. W. (2001) Seale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol. Bioeng. 73, 390–399.

    PubMed  CAS  Google Scholar 

  27. Onyeaka, H., Nienow, A. N., and Hewitt, C. J. (2003) Further studies related to the scale-up of high cell density Escherichia coli fed-batch fermentation: the additional effect of a changing microenvironment when using aqueous ammonia to control pH. Biotechnol. Bioeng. 84, 474–484.

    PubMed  CAS  Google Scholar 

  28. Zheng, J. Y. and Janis, L. J. (2006) Influence of pH, buffer species, and storage temperature on physicochemical stability of a humanized monoclonal antibody LA298. Int. J. Pharmaceutics 308, 46–51.

    CAS  Google Scholar 

  29. Gray, D. R., Chen, S., Howarth, W., Inlow, D., and Maiorella, B. L. (1996) CO2 in large-scale and high-density CHO cell perfusion culture. Cytotechnol. 22, 65–78.

    CAS  Google Scholar 

  30. Nienow A. W., Langheinrich, C., Stevenson, N. C., Emery, A. N., Clayton, T. M., and Slater, N. K. H. (1996) Homogenisation and oxygen transfer rates in large agitated and sparged animal cell bioreactors: Some implications for growth and production. Cytotechnol. 22, 87–94.

    CAS  Google Scholar 

  31. Mostafa, S. S. and Gu, X. S. (2003). Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol Prog. 19, 45–51.

    PubMed  CAS  Google Scholar 

  32. Bothun, G. D., Knutson, B. L., Berberich, J. A., Strobel, H. J., and Nokes, S. E. (2004) Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl. Microbiol. Biotechnol. 65, 149–157.

    PubMed  CAS  Google Scholar 

  33. Lamed, R. J., Lobos, J. H., and Su, T. M. (1988) Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl. Environ. Microbiol. 54, 1216–1221.

    PubMed  CAS  Google Scholar 

  34. Zanghi, J. A., Schmelzer, A. E., Mendoza, T. P., Knop, R. H., and Miller, W. M. (1999). Bicarbonate concentration and osmolarity are key determinants in the inhibition of CHO polysialylation under elevated pCO2 or pH. Biotechnol. Bioeng. 65, 182–191.

    PubMed  CAS  Google Scholar 

  35. Castan, A., Näsman, A., and Enfors, S. O. (2002) Oxygen enriched air supply in Escherichia coli processes: production of biomass and recombinant human growth hormone. Enzyme Microb. Technol. 30, 847–854.

    CAS  Google Scholar 

  36. Mashego, M. R. (2005) Robust experimental methods to study in-vivo pre-steady state kinetics of primary metabolism in Saccharomyces cerevisiae. PhD Thesis. Delft University of Technology.

  37. Mitchell-Logean, C. and Murhammer, D. W. (1997) Bioreactor headspace purging reduces dissolved carbon dioxide accumulation in insect cell cultures and enhances cell growth. Biotechnol. Prog. 13, 875–877.

    CAS  Google Scholar 

  38. Garnier, A., Voyer, R., Tom, R., Perret, S., Jardin, B., and Kamen, A. (1996) Dissolved carbon dioxide accumulation in a large scale and high density production of TGF β receptor with baculovirus infected Sf-9 cells. Cytotechnol. 22, 53–63.

    CAS  Google Scholar 

  39. Contreras, A., García, F., Molina, E., and Merchuk, J. C. (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth pf Phaedactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol. Bioeng. 60, 317–325.

    PubMed  CAS  Google Scholar 

  40. Johnston, J. S., Jensen, A., Czeschin, D. G., and Price, H. J. (1996) Environmentally induced nuclear 2C DNA content instability in Helianthus annuus (Asteraceae). Am. J. Bot. 83, 1113–1120.

    Google Scholar 

  41. Weber, W., Rimann, M., de Glutz, F.-N., Weber, E., Memmert, K., and Fussenegger, M. (2005) Gas-inducible product gene expression in bioreactors. Metabolic Eng. 7, 174–181.

    CAS  Google Scholar 

  42. Weber, W., Spielmann, M., Daoud El-Baba, M., Keller, B., Aubel, D., and Fussenegger, M. (2005) Tobacco smoke as inducer for gas phase-controlled transgene expression in mammalian cells and mice. Biotechnol. Bioeng. 90, 893–897.

    PubMed  CAS  Google Scholar 

  43. Mollet, M., Ma, N., Zhao, Y., Brodkey, R., Taticek, R., and Chalmers, J. J. (2004) Bioprocess equipment: Characterization of energy dissipation rate and its potential to damage cells. Biotechnol. Prog. 20, 1437–1448.

    PubMed  CAS  Google Scholar 

  44. Garcia-Briones, M. A. and Chalmers, J. J. (1994) Flow parameters associated with hydrodynamic cell injury. Biotechnol. Bioeng. 44, 1089–1098.

    PubMed  CAS  Google Scholar 

  45. Taticek, R. A., Moo-Young, M., and Legge, R. L. (1991) The scale-up of plant cell culture: Engineering considerations. Plant Cell Tissue and Organ Culture 24, 139–158.

    Google Scholar 

  46. Toma, M. K., Ruklisha, M. P., Vanags, J. J., et al. (1991) Inhibition of microbial growth and metabolism by excess turbulence. Biotechnol. Bioeng. 38, 552–556.

    CAS  PubMed  Google Scholar 

  47. Cruz, P. E., Cuhna, A., Peixoto, C. C., Clemente, J., Moreira, J. L., and Carrondo, M. T. J. (1998) Optimization of the production of virus-like particles in insect cells. Biotechnol. Bioeng. 60, 408–418.

    PubMed  CAS  Google Scholar 

  48. Thomas, C. R. and Zhang, Z. (1998) The effect of hydrodynamics on biological materials, in Advances in Bioprocess Engineering II (Galindo E. and Ramírez, O. T., eds.), Kluwer Academic Publishers, Dordretch, pp. 137–170.

    Google Scholar 

  49. Chisti, Y. (2001) Hydrodynamic damage to animal cells. Crit. Rev. Biotechnol. 21, 67–110.

    PubMed  CAS  Google Scholar 

  50. Palomares, L. A., Estrada-Mondaca, S., and Ramírez, O. T. (2006) Principles and Applications of the Insect-Cell-Baculovirus Expression Vector System, in Cell Culture-Technology for Pharmaceutical and Cellular Applications (Ozturk, S. and Hu, W. S., eds.), Taylor and Francis, New York, pp. 627–692.

    Google Scholar 

  51. Sahoo, S., Rao, K., and Suraishkumar, G. K. (2006) Reactive oxygen species induced by shear stress mediate cell death in Bacillus subtillis. Biotechnol. Bioeng. 94, 118–127.

    PubMed  CAS  Google Scholar 

  52. Lu, G. Z., Thompson, B. G., Suresh, M. R., and Gray, M. R. (1995) Cultivation of hybridoma cells in an inclined bioreactor. Biotechnol. Bioeng. 45, 176–186.

    CAS  PubMed  Google Scholar 

  53. McDowell, C. L. and Papoutsakis, E. T. (1998) Increased agitation intensity increases CD13 receptor surface content and mRNA levels, and alters the metabolism of HL60 cells cultures in stirred tank reactors. Biotechnol. Bioeng. 60, 239–250.

    PubMed  CAS  Google Scholar 

  54. Senger, R. S. and Karim, M. N. (2003) Effect of shear stress in intrinsic CHO culture state and glycosylation of recombinant tissue-type plasminogen activator protein. Biotechnol. Prog. 19, 1199–1209.

    PubMed  CAS  Google Scholar 

  55. Ranjan, V., Waterbury, R., Xiao, Z., and Diamond, S. L. (1996) Fluid shear stress induction of the transcriptional activator c-fos in human and bovine endothelial cells, HeLa, and Chinese hamster ovary cells. Biotechnol. Bioeng. 49, 383–390.

    CAS  PubMed  Google Scholar 

  56. Lakhotia, S., Bauer, K. D., and Papoutsakis, E. T. (1992) Damaging agitation intensities increase DNA synthesis rate and alter cell-cycle phase distributions of CHO cells. Biotechnol. Bioeng. 40, 978–990.

    CAS  PubMed  Google Scholar 

  57. Gao, Q., Fang, A., Oierson, D. L., Mishra, S. K., and Demain, A. L. (2001) Shear stress enhances microcin B17 production in a rotating wall bioreactor, but ethanol stress does not. Appl. Microbiol. Biotechnol. 56, 384–387.

    PubMed  CAS  Google Scholar 

  58. Abu-Reesh, I. and Kargi, F. (1989) Biological responses of hybridoma cells to defined hydrodynamic shear stress. J. Biotechnol. 9, 167–178.

    CAS  Google Scholar 

  59. Goldblum, S., Bae, Y.-K., Hink, W. F., and Chalmers, J. (1990) Protective effect of methylcellulose and other polymers on insect cells subjected to laminar shear stress. Biotechnol. Prog. 6, 383–390.

    PubMed  CAS  Google Scholar 

  60. Michaels, J. D., Petersen, J. F., McIntire, L. V., and Papoutsakis, E. T. (1991) Protection mechanisms of freely suspended animal cells (CRL 8018) from fluidmechanical injury. Viscometric and bioreactor studies using serum, Pluronic F68 and polyethylene glycol. Biotechnol. Bioeng. 38, 169–180.

    CAS  PubMed  Google Scholar 

  61. Palomares, L. A., González, M., and Ramírez O. T. (2000) Evidence of Pluronic F-68 direct interaction with insect cells: Impact on shear protection, recom binant protein and baculovirus production, Enzyme Microb. Technol. 26, 324–331.

    PubMed  CAS  Google Scholar 

  62. Ramírez, O. T. and Mutharasan, R. (1990) The role of plasma membrane fluidity on the shear sensitivity of hybridomas grown under hydrodynamic stress. Biotechnol. Bioeng. 36, 911–920.

    PubMed  Google Scholar 

  63. Al-Rubeai, M., Singh, R. P., Goldman, M. H., and Emery, A. N. (1995) Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol. Bioeng. 45, 463–472.

    CAS  PubMed  Google Scholar 

  64. Wase, D. A., and Ratwatte, H. A. M. (1985) Variation of intracellular sodium and potassium concentration with changes in agitation rate for chemostat-cultivated Escherichia coli. Appl. Microbiol. Biotechnol. 22, 325–328.

    CAS  Google Scholar 

  65. Rocha-Valadez, J. A., Hassan, M., Corkidi, G., Flores, C., Galindo, E., Serrano-Carreón, L. (2005) 6-Pentyl-α pyrone production by Trichoderma harzianum: The influence of energy dissipation rate and its implications of fungal physiology. Biotechnol. Bioeng. 91, 54–61.

    PubMed  CAS  Google Scholar 

  66. Manfredini, R., Cavallera, V., Marini, L., and Donati, G. (1983) Mixing and oxygen transfer in conventional strirrer fermentors. Biotechnol. Bioeng. 25, 3115–3131.

    CAS  PubMed  Google Scholar 

  67. Gorenflo, V. M., Beauchesne, P., Tayi, V., et al. Acoustic cell processing for viral transduction or bioreactor cell retention. Proceedings of the 19th ESACT meeting. In press.

  68. Tsao, E. I., Bohn, M. A., Naumsuwan, V., Ostead, D. R., and Munster, M. J. (1992) Effects of heat shock on the production of human erythropoietin from recombinant CHO cells. Biotechnol. Bioeng. 40, 1190–1196.

    CAS  PubMed  Google Scholar 

  69. Yamamori, T. and Yura, T. (1980) Temperature-induced synthesis of specific proteins in Escherichia coli: Evidence for trancriptional control. J. Bacteriol. 142, 843–851.

    PubMed  CAS  Google Scholar 

  70. Oosterhuis, N. M. G. (1984) Scale-up of bioreactors: a scale-down approach. PhD thesis, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  71. De León, A., Galindo, E., and Ramírez, O. T. (1995) Effect of oscillating dissolved oxygen tension on penicillin acylase production by a recombinant E coli, in Biochemical Engineering 3 (Schmid, R. D., ed.), Universität Stuttgart, Stuttgart, pp. 200–202.

    Google Scholar 

  72. Serrato, J. A., Palomares, L. A., Meneses-Acosta, A., and Ramírez, O. T. (2004) Heterogeneous conditions in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures. Biotechnol. Bioeng. 88, 176–188.

    PubMed  CAS  Google Scholar 

  73. Sandoval-Basurto, E., Gosset, G., Bol'var, F., and Ramírez, O. T. (2005) Culture of Escherichia coli under dissolved oxygen gradients simulated in a two-compartments scale-down system: metabolic response and production of recombinant protein. Biotechnol. Bioeng. 89, 453–463.

    PubMed  CAS  Google Scholar 

  74. Lara, A. R., Leal, L. I., Flores, N., Gosset, G., Bolívar, F., and Ramírez, O. T. (2006) Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol Bioeng. 93, 372–385.

    PubMed  CAS  Google Scholar 

  75. Serrato, J. A., Hernández, V., and Ramírez, O. T. (2006) Heterogeneous conditions in pH and dissolved CO2 concentration on hybridoma cultures: Implications on growth and monoclonal antibody glycosylation. Presented at the Cell Culture Engineering X meeting. Whitsler, BC, Canada.

  76. Schilling, B. M., Pfefferle, W., Bachmann, B., Leuchtenberger, W., and Deckwer, W. (1999) A special reactor design for investigations of mixing time in a scaled-down industrial L-lysine fed-batch fermentation process. Biotechnol. Bioeng. 64, 599–606.

    PubMed  CAS  Google Scholar 

  77. Papagianni, M., Mattey, M., and Kristiansen, B. (2003) Design of a tubular loop bioreactor for scale-up and scale-down of fermentation processes. Biotechnol. Prog. 19, 1498–1504.

    PubMed  CAS  Google Scholar 

  78. Oosterhuis, N. M. G., Kossen, N. W. F., Olivier, A. P. C., and Schenk, E. S. (1985) Scale-down and optimization studies of the gluconic acid fermentation by Gluconobacter oxydans. Biotechnol. Bioeng. 27, 711–720.

    CAS  PubMed  Google Scholar 

  79. Namdev, P. K., Yegneswaran, P. K., Thompson, B. G., and Gray, M. R. (1991) Experimental simulation of large-scale bioreactor environments using a Monte Carlo method. Can. J. Chem. Eng. 69, 513–519.

    Article  CAS  Google Scholar 

  80. Schweder, T., Krüger, E., Xu, B., Jürgen, B., Blomsten, G., Enfors, S., and Hecker, M. (1999) Monitoring genes that respond to process-related stress in largescale bioprocesses. Biotechnol. Bioeng. 65, 151–159.

    PubMed  CAS  Google Scholar 

  81. Cronan, J. E. and Laporte, D. (1996) Tricarboxylic acid cycle and glyoxylate bypass, in Escherichia coli and Salmonella. Cellular and Molecular Biology, (Neidhardt F. C., et al., eds.), ASM Press, Washington, DC, pp. 206–216.

    Google Scholar 

  82. Konz, J. O., King, J., and Cooney, C. L. (1998) Effects of oxygen on recombinant protein expression. Biotechnol. Prog. 14, 393–409.

    PubMed  CAS  Google Scholar 

  83. Poole, R. K. and Ingledwe, W. J. (1987) Patways of electron to oxygen, in Escherichia coli and Salmonella typhiparium: Cellular and Molecular Biology (Neidhardt F. C., et al., eds.), ASM Press, Washington, DC, pp. 170–200.

    Google Scholar 

  84. Gennis, R. B. and Stewart, V. (1996) Respiration, in Escherichia coli and Salmonella. Cellular and Molecular Biology, (Neidhardt, F. C., et al., eds.), ASM Press, Washington, DC, pp. 217–261.

    Google Scholar 

  85. O'Beirne, D., and Hamer, G. (2000) Oxygen availability and growth of Escherichia coli W3110: A problem exacerbated by scale-up. Bioprocess Eng. 23, 487–494.

    Google Scholar 

  86. Cashel, M., Gentry, D. R., Hernandez, V. J., and Vinella, D. (1996) The stringent response. In Escherichia coli and Salmonella. Cellular and Molecular Biology, (Neidhardt, F. C., et al., eds.), ASM Press, Washington, DC, pp. 1458–1496.

    Google Scholar 

  87. Neubauer, P., Ahman, M., Törkvist, M., Larsson, G., and Enfors, S.O. (1995) Response of guanosine tetraphosphate to glucose fluctuations in fed-batch cultivations of Escherichia coli. J. Biotechnol. 43, 195–204.

    PubMed  CAS  Google Scholar 

  88. Xu, B., Jahic, M., Blomsten, G., and Enfors, S. (1999) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. Appl. Microbiol. Biotechnol. 51, 564–571.

    PubMed  Google Scholar 

  89. Lin, H. Y. and Neubauer, P. (2000) Influence of controlled glucose oscillations on a fed-batch process of recombinant Escherichia coli. J. Biotechnol. 79, 27–37.

    PubMed  CAS  Google Scholar 

  90. Hewitt, C., Caron, G., Axelsson, B., McFarlane, C., and Nienow, A. (2000) Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol. Bioeng. 70, 381–39.

    PubMed  CAS  Google Scholar 

  91. Hopkins, D. J., Betenbaugh, M. J., and Dhurjati, P. (1987) Effects of dissolved oxygen tension on the stability of recombinant Escherichia coli containing plasmid pKN401. Biotechnol. Bioeng. 29, 85–91.

    CAS  PubMed  Google Scholar 

  92. Oosterhuis, N. M. G., Groesbeek, N. M., Olivier, A. P. C., and Kossen, N. W. F. (1983) Scale-down aspects of the gluconic acid fermentation. Biotechnol. Lett. 5, 141–146.

    CAS  Google Scholar 

  93. Buse, R., Qazi, G. N., and Onken, U. (1992) Influence of constant and oscillating dissolved oxygen concentrations on keto acid production by Gluconobacter oxydans subsps. melanogenum. J. Biotechnol. 26, 231–244.

    PubMed  CAS  Google Scholar 

  94. Moes, J., Griot, M., Heinzle, E., Dunn, I. J., and Bourne, J. R. (1985) A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol. Bioeng. 27, 482–489.

    CAS  PubMed  Google Scholar 

  95. Griot, N., Sanee, U., Heinzle, E., Dunn, I. J., and Bourne, J. R. (1988) Fermenter scale-up using an oxygen sensitive culture. Chem. Eng. Sci. 43, 1903–1908.

    CAS  Google Scholar 

  96. Griot, M., Moes, J., Heinzle, E., Dunn, I. J., and Bourne, J. R. (1986) A microbial culture for the measurement of macro and micromixing phenomena in biological reactors, in Proc. Int. Conf. on Bioreactor Fluid Dynamics. (Stanbury, J., ed.) Cambridge, England, pp. 203–216.

  97. Amanullah, A., Nienow, A. W., Emery, A. N., and McFarlane, C. M. (1993) The use of Bacillus subtilis as an oxygen sensitive culture to simulate dissolved oxygen cycling in large scale fermenters. Trans. Inst. Chem. Eng. Part C. 71, 206–208.

    CAS  Google Scholar 

  98. Suphantharika, M., Ison, A. P., and Lilly, M. D. (1995) The effect of cycling dissolved oxygen tension on the synthesis of the antibiotic difficidin by Bacillus subtillis. Bioprocess. Eng. 12, 181–186.

    CAS  Google Scholar 

  99. Galindo, E. (1994) Aspects of the process for xanthan production. Trans. Inst. Chem. Eng. C. 72, 227–237.

    CAS  Google Scholar 

  100. Serrano-Carreón, Corona, R. M., Sánchez, A., and Galindo, E. (1998) Prediction of xanthan fermentation development by a model linking kinetics, power drawn and mixing, Process Biochem. 33, 133–146.

    Google Scholar 

  101. Amanullah, A., Tuttiet, B., and Nienow, A. W. (1998) Agitator speed and dissolved oxygen effects in xanthan fermentations. Biotechnol. Bioeng. 57, 198–210.

    PubMed  CAS  Google Scholar 

  102. Trujillo-Roldán, M. A., Peña, C., Ramírez, O.T., and Galindo, E. (2001) Effect of oscillating dissolved oxygen tension on the production of alginate by Azotobacter vinelandii. Biotechnol. Prog. 17, 1042–1048.

    PubMed  Google Scholar 

  103. Trujillo-Roldán, M. A., Moreno, S., Espín, G., and Galindo, E. (2004) Roles of the polymerase complex and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii, Appl. Microbiol. Biotechnol. 63, 742–747.

    PubMed  Google Scholar 

  104. Wills, C. (1990) Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae. Crit. Rev. Biochem. Mol. Biol. 25, 245–280.

    PubMed  CAS  Google Scholar 

  105. Kappeli, O., Gschwend-Petrik, M., and Fiechter, A. (1985) Transient responses of Saccharomyces uvarum to a change of the growth-limiting nutrient in continuous culture. J. Gen. Microbiol. 131, 47–52.

    Google Scholar 

  106. Cortés, G., Trujillo-Roldán, M. A., Ramírez, O. T., and Galindo, E. (2005) Production of β-galactosidase by Kluyveromyces marxianus under oscillating dissolved oxygen tension. Process Biochem. 40, 773–778.

    Google Scholar 

  107. Kacmar, J., Zamamiri, A., Carlson, R., Abu-Absi, N. R., and Srienc, F. (2004) Single-cell variability in growing Saccharomyces cerevisiae cell populations measured with automated flow cytometry. J. Biotechnol. 109, 239–254.

    PubMed  CAS  Google Scholar 

  108. Einsele, A. (1978) Scaling up bioreactors. Process Biochem. 7, 13–14.

    Google Scholar 

  109. Vardar, F., and Lilly, M. D. (1982) Effect of cycling oxygen concentrations on product formation in penicillin fermentations. Eur. J. Appl. Microbiol. Biotechnol. 14, 203–211.

    CAS  Google Scholar 

  110. Larsson, G. and Enfors, S.-O. (1988) Studies of insufficient mixing in bioreactors: effect of limiting oxygen concentrations and short term oxygen starvation on Penicillium chrysogenum. Bioproc. Eng. 3, 123–127.

    CAS  Google Scholar 

  111. Yegneswaran, P. K., Gray, M. R., and Thompson, B. G. (1991) Experimental simulation of dissolved oxygen fluctuations in large fermentors: effect on Streptomyces clavuligerus. Biotechnol. Bioeng. 38, 1203–1209.

    CAS  PubMed  Google Scholar 

  112. Bhargava, S., Wenger, K. S., Rane, K., Rising, V., and Marten, M. R. (2005) Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source. Biotechnol. Bioeng 89, 524–529.

    PubMed  CAS  Google Scholar 

  113. Langheinrich, C., Nienow, A. W., Eddleston, T., Stevenson, N. C., Emery, A. N., Clayton, T. M., and Slater, N. K. H. (1998) Liquid homogenization studies in animal cell bioreactors of up to 8 m3 in volume. Trans IChemE 76, 107–116.

    CAS  Google Scholar 

  114. Varley, J., and Birch, J. (1999) Reactor design for large-scale suspension animal cell culture. Cytotechnol. 29, 177–205.

    CAS  Google Scholar 

  115. Bödeker, B. G. D., Newcomb, R., Yuan, P., Braufman, A., Kelsey, W. (1994) Production of recombinant factor VIII from perfusion cultures: I. Large-scale fermentation, in Animal Cell Technology: Products of today, prospects of tomorrow (Spier, R. E., Griffiths, J. B., and Berthold, W., eds.), Butterworth-Heinemann, Oxford, pp. 580–583.

    Google Scholar 

  116. Palomares, L. A., Estrada-Mondaca, S., and Ramírez, O. T. (2004) Production of recombinant proteins: Challenges and solutions, in Methods in Molecular Biology. Recombinant Gene Expression Protocols (Balbás, P. and Lorence, A., eds.), Humana, Totowa, NJ, 267, 15–51.

    Google Scholar 

  117. Jem, J. K., Fateen, S., and Michaels, J. (1994) Mixing phenomena in industrial bioreactors with perfusion spin filters, in Animal Cell Technology: Products of Today. Prospects for Tomorrow (Spier, R. E., Griffits, J. B., and Berthold, W., eds.), Butterworth Heinemann, Oxford, UK, pp. 392–396.

    Google Scholar 

  118. Dalm, M. C. F., Jansen, M., Keijzer, T. M. P., et al. (2005) Stable hydridoma cultivation in a pilot-scale acoustic perfusion system: Long-term process performance and effect of the recirculation rate. Biotechnol. Bioeng. 91, 894–900.

    PubMed  CAS  Google Scholar 

  119. Palomares, L. A., López, S., and Ramírez, O. T. (2004) Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of insect cell cultures. Biochem. Eng. J. 19, 87–93.

    CAS  Google Scholar 

  120. Curtis, W. R. (2000) Hairy roots, bioreactor growth, in The Encyclopedia of Cell Technology, vol. 2: (Spier, R. E., ed.), John Wiley and Sons, New York, NY, pp. 827–841.

    Google Scholar 

  121. Gerecht-Nir, S., Cohen, S., and Itskovitz-Eldor, J. (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng. 86, 493–502.

    PubMed  CAS  Google Scholar 

  122. Bibila, T. A., and Robinson, D. K. (1995) In pursuit of the optimal fed-batch operation process for monoclonal antibody production. Biotechnol. Prog. 11, 1–13.

    PubMed  CAS  Google Scholar 

  123. Palomares, L. A., and Ramírez, O. T. (1996) The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnol. 22, 225–237.

    CAS  Google Scholar 

  124. Hevehan, D. L. and Miller, W. M. (1999) Hypoxia, effects on animal cells, in Encyclopedia of Bioprocess Technology, Fermentation, Biocatalysis and Bioseparation (Flickinger, M. C., and Drew, S. W., eds.), John Wiley & Sons, New York, pp. 1418–1433.

    Google Scholar 

  125. Rhiel, M. and Murhammer, D. W. (1995) The effect of oscillating dissolved oxygen concentrations on the metabolism of a Spodoptera frugiperda IPLB-Sf21-AE clonal isolate. Biotechnol. Bioeng. 47, 640–650.

    CAS  PubMed  Google Scholar 

  126. Kimura, R. and Miller, W. M. (1997) Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol. Prog. 13, 311–317.

    PubMed  CAS  Google Scholar 

  127. Goldman, M. H., James, D. C., Rendall, M., Ison, A. P., Hoare, M., and Bull, A. T. (1998) Monitoring recombinant human interferon-gamma N-glycosylation during perfused fluidized-bed and stirred tank batch culture of CHO cells. Biotechnol. Bioeng. 60, 596–607.

    PubMed  CAS  Google Scholar 

  128. Hayter, P. M., Curling, E. M. A., Baines, A. J., et al. (1992) Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon-γ. Biotechnol. Bioeng. 39, 327–335.

    CAS  PubMed  Google Scholar 

  129. Cudna, R. E. and Dickson, A. J. (2002) Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol. Bioeng. 81, 56–65.

    Google Scholar 

  130. Lipscomb, M. L., Palomares, L. A., Hernández, V., Ramírez, O. T., and Kompala, D. S. (2005) Effect of production method and gene amplification on the glycosylation pattern of a secreted reporter protein in CHO cells. Biotechnol. Prog. 21, 40–49.

    PubMed  CAS  Google Scholar 

  131. Osman, J. J., Birch, J., and Varley, J. (2002) The response of GS-NS0 myeloma cells to single and multiple pH perturbations. Biotechnol. Bioeng. 79, 398–407.

    PubMed  CAS  Google Scholar 

  132. Andersson, H. and van den Berg, A. (2004) Microtechnologies and nanotechnologies for single cell analysis. Curr. Opinion Biotechnol. 15, 44–49.

    CAS  Google Scholar 

  133. Samorski, M., Muller-Newen, G., and Buchs, J. (2005) Quasi-continuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtier plates. Biotechnol. Bioeng. 92, 61–68.

    PubMed  CAS  Google Scholar 

  134. Harms, P., Kostov, Y., French, J. A., et al. Design and performance of a 24-station high throughput microbioreactor. Biotechnol. Bioeng. 93, 6–13.

  135. Lara, A. R., Vázquez, C., Gosset, G., Bolívar, F., López-Munguía, A., and Ramírez, O. T. (2006) Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions. Biotechnol. Bioeng. 94, 1164–1175.

    PubMed  CAS  Google Scholar 

  136. Kenty, B., Li, Z., Vanden, T., and Lee, S. (2005) Mixing in laboratory-scale bioreactors used for mammalian cell culture. Presented at the 229th American Chemical Society National Meeting, San Diego, CA.

  137. Leckie, F., Scragg, A. H., and Cliffe, K. C. (1991) Effect of bioreactor design and agitator speed on the growth and alkaloid accumulation by cultures of Catharantus roseus. Enzyme Microb. Technol. 13, 296–305.

    CAS  Google Scholar 

  138. Jolicoeur, M., Chavarie, C., Carreu, P. J., and Archambault, J. (1992) Development of a helicalribbon impeller bioreactor for high density plant cell suspension culture. Biotechnol. Bioeng. 39, 511–521.

    CAS  PubMed  Google Scholar 

  139. Kiss, R., Croughan, M., Trask, J., et al. (1994) Mixing time characterization in large scale mammalian cell bioreactors. AIChE Annual meeting, November 1994, San Francisco, CA. Paper No 55c.

  140. Vrábel, P., van der Lans, R. G. J. M., Luyben, K. Ch. A. M., Boon, L., and Nienow, A. (2000) Mixing in large-scale vessels with multiple radial or radial and axial up-pumping impellers: modelling and measurements. Chem. Eng. Sci. 55, 5881–5896.

    Google Scholar 

  141. Schügerl, K. (1993). Comparison of different bioreactor performances. Bioprocess Eng. 9, 215–223.

    Google Scholar 

  142. Sweere, A. P. J., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1987) Regime analysis and scale-down: tools to investigate the performance of bioreactors. Enzyme Microb. Technol. 9, 386–398.

    CAS  Google Scholar 

  143. Namdev, P. K., Irwin, N., Thompson, B. G., and Gray, M. R. (1993) Effect of oxygen fluctuations on recombinant Escherichia coli fermentation. Biotechnol. Bioeng. 41, 666–670.

    CAS  PubMed  Google Scholar 

  144. Neubauer, P., Häggstrom, L., and Enfors, S. O. (1995) Influence of substrate oscillations on acetate formation and growth yield in E. coli glucose limited fed-batch fermentations. Biotechnol. Bioeng. 47, 139–146.

    CAS  PubMed  Google Scholar 

  145. Sweere, A. P. J., Janse, L., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988) Experimental simulation of oxygen profiles and their influence of Baker's yeast production: II. Two-fermenter system. Biotechnol. Bioeng. 31, 579–586.

    CAS  PubMed  Google Scholar 

  146. Sweere, A. P. J., Matla, Y. A., Zandvliet, J., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988) Experimental simulation of glucose fluctuations. The influence of continually changing glucose concentrations of the fed batch baker's yeast production. Appl. Microbiol. Biotechnol. 28, 109–115.

    CAS  Google Scholar 

  147. Sweere, A. P. J., Mesters, J. R., Janse, L., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988) Experimental simulation of oxygen profiles and their influence of baker's yeast production: I. One-fermenter system. Biotechnol Bioeng. 31, 567–578.

    CAS  PubMed  Google Scholar 

  148. George, S., Larsson, G., and Enfors, S. O. (1993) A scale-down two-compartmentreator with controlled substrate oscillations: metabolic response of Saccharomyces cerevisiae. Bioprocess Eng. 9, 249–257.

    CAS  Google Scholar 

  149. Abel, C., Hübner, U., and Schügerl, K. (1994) Transient behaviour of Baker's yeast during enforced periodical variation of dissolved oxygen concentration. J. Biotechnol. 32, 45–47.

    PubMed  CAS  Google Scholar 

  150. Alexeeva, S., de Kort, B., Sawers, G., Hellingwerf, K. J., and Teixeira de Mattos, M. J. (2000) Effects of limited aeration and of the arcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol. 182, 4934–4940.

    PubMed  CAS  Google Scholar 

  151. Carlson, R. and Srienc, F. (2004) Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states. Biotechnol. Bioeng. 86, 149–162.

    PubMed  CAS  Google Scholar 

  152. Vemuri, G. N., Minning, T. A., Altman, E., and Eiteman, M. A. (2005) Physiological response of central metabolism in Escherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase. Biotechnol. Bioeng. 90, 64–76.

    PubMed  CAS  Google Scholar 

  153. Ramírez, O. T. and Mutharasan, R. (1990) Cell cycleand growth phase-dependent variations in size distribution, antibody productivity and oxygen demand in hybridoma cultures. Biotechnol. Bioeng. 36, 839–848.

    PubMed  Google Scholar 

  154. Higareda, A. E., Possani, L. D., and Ramírez, O. T. (1997) The use of culture redox potential and oxygen uptake rate for assessing glucose and glutamine depletion in hybridoma cultures. Biotechnol. Bioeng. 56, 555–563.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Palomares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lara, A.R., Galindo, E., Ramírez, O.T. et al. Living with heterogeneities in bioreactors. Mol Biotechnol 34, 355–381 (2006). https://doi.org/10.1385/MB:34:3:355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:34:3:355

Index Entries

Navigation