Skip to main content
Log in

Curvature Driven Interface Evolution

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

Curvature driven surface evolution plays an important role in geometry, applied mathematics and in the natural sciences. In this paper geometric evolution equations such as mean curvature flow and its fourth order analogue motion by surface diffusion are studied as examples of gradient flows of the area functional. Also in many free boundary problems the motion of an interface is given by an evolution law involving curvature quantities. We will introduce the Mullins-Sekerka flow and the Stefan problem with its anisotropic variants and discuss their properties.

In phase field models the area functional is replaced by a Ginzburg-Landau functional leading to a diffuse interface model. We derive the Allen-Cahn equation, the Cahn-Hilliard equation and the phase field system as gradient flows and relate them to sharp interface evolution laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Here we cite Ecker [54, p. 53].

References

  1. Abels, H., Wilke, M.: Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. 67(11), 3176–3193 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2005), viii+333 pp.

    MATH  Google Scholar 

  4. Alikakos, N.D., Bates, P.W., Chen, X.: Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Ration. Mech. Anal. 128(2), 165–205 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31(2), 387–438 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Angenent, S.B., Gurtin, M.E.: Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108, 323–391 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations with a Foreword by Olivier Faugeras. Applied Mathematical Sciences, vol. 147. Springer, New York (2002), xxvi+286 pp.

    Google Scholar 

  8. Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441–462 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Barrett, J.W., Garcke, H., Nürnberg, R.: On the parametric finite element approximation of evolving hypersurfaces in \(\mathbb{R}^{3}\). J. Comput. Phys. 227(9), 4281–4307 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric approximation of surface clusters driven by isotropic and anisotropic surface energies. Interfaces Free Bound. 12(2), 187–234 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229(18), 6270–6299 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical computations of facetted pattern formation in snow crystal growth. Phys. Rev. E 86(1), 011604 (2012)

    Google Scholar 

  13. Barrett, J.W., Garcke, H., Nürnberg, R.: A variational formulation of anisotropic geometric evolution equations in higher dimensions. Numer. Math. 109(1), 1–44 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Bellettini, G.: An introduction to anisotropic and crystalline mean curvature flow. In: Proceedings of Minisemester on Evolution of Interfaces. Sapporo 210. Hokkaido University Technical Report Series in Math., vol. 145, pp. 102–159 (2010)

    Google Scholar 

  15. Bellettini, G., Novaga, M., Paolini, M.: Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces Free Bound. 1, 39–55 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Bellettini, G., Novaga, M., Paolini, M.: On a crystalline variational problem, part I: First variation and global L regularity. Arch. Ration. Mech. Anal. 157, 165–191 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25(3), 537–566 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Bernoff, A.J., Bertozzi, A.L., Witelski, T.P.: Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J. Stat. Phys. 93(3–4), 725–776 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Blatt, S.: Loss of convexity and embeddedness for geometric evolution equations of higher order. J. Evol. Equ. 10(1), 21–27 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Blowey, J.F., Elliott, C.M.: The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. Eur. J. Appl. Math. 2(3), 233–280 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Braides, A.: Γ-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford University Press, London (2005), xii+217 pp.

    Google Scholar 

  22. Brakke, K.A.: The Motion of a Surface by Its Mean Curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton (1978), i+252 pp.

    MATH  Google Scholar 

  23. Brochet, D., Chen, X., Hilhorst, D.: Finite dimensional exponential attractor for the phase field model. J. Anal. Appl. 49, 197–212 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Bronsard, L., Garcke, H., Stoth, B.: A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem. Proc. R. Soc. Edinb. A 128, 481–506 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Bronsard, L., Kohn, R.V.: Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differ. Equ. 90(2), 211–237 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Bronsard, L., Stoth, B.: Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation. SIAM J. Math. Anal. 28(4), 769–807 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Sciences, vol. 121. Springer, New York (1996), x+357 pp.

    MATH  Google Scholar 

  28. Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)

    MathSciNet  MATH  Google Scholar 

  29. Caginalp, G.: Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A 39(3), 5887–5896 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Caginalp, G., Chen, X.: Convergence of the phase field model to its sharp interface limits. Eur. J. Appl. Math. 9, 417–445 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Caginalp, G., Fife, P.C.: Dynamics of layered interfaces arising from phase boundaries. SIAM J. Appl. Math. 48(3), 506–518 (1988)

    MathSciNet  Google Scholar 

  32. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Cao, F.: Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics, vol. 1805. Springer, Berlin (2003)

    MATH  Google Scholar 

  34. Chan, T.F., Shen, J.: Image Processing and Analysis. SIAM, Philadelphia (2005), xxi+184 pp.

    MATH  Google Scholar 

  35. Chen, L.-Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Google Scholar 

  36. Chen, X.: Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Equ. 96(1), 116–141 (1992)

    MATH  Google Scholar 

  37. Chen, X.: The Hele-Shaw problem and area-preserving curve shortening motion. Arch. Ration. Mech. Anal. 123, 117–151 (1993)

    MATH  Google Scholar 

  38. Chen, X., Hilhorst, D., Logak, E.: Mass conserving Allen-Cahn equation and volume preserving mean curvature flow. Interfaces Free Bound. 12(4), 527–549 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Chen, X., Hong, J., Yi, F.: Existence, uniqueness and regularity of classical solutions of the Mullins-Sekerka problem. Commun. Partial Differ. Equ. 21, 1705–1727 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Chen, X., Reitich, F.: Local existence and uniqueness of the classical Stefan problem with surface tension and dynamical undercooling. J. Math. Anal. Appl. 162, 350–362 (1992)

    MathSciNet  Google Scholar 

  41. Chen, Y.G., Giga, Y., Goto, S.L.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33, 749–786 (1991)

    MathSciNet  MATH  Google Scholar 

  42. Chou, K.-S.: A blow-up criterion for the curve shortening flow by surface diffusion. Hokkaido Math. J. 32(1), 1–19 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Constantin, P., Pugh, M.: Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6, 393–415 (1993)

    MathSciNet  MATH  Google Scholar 

  44. Cummings, L.J., Richardson, G., Ben Amar, M.: Models of void electromigration. Eur. J. Appl. Math. 12(2), 97–134 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Dai, S., Niethammer, B., Pego, R.L.: Crossover in coarsening rates for the monopole approximation of the Mullins-Sekerka model with kinetic drag. Proc. R. Soc. Edinb., Sect. A, Math. 140(03), 553–571 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Dal Maso, G.: An Introduction to Γ-Convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhäuser, Boston (1993), xiv+339 pp.

    Google Scholar 

  47. Davi, F., Gurtin, M.E.: On the motion of a phase interface by surface diffusion. Z. Angew. Math. Phys. 41(6), 782–811 (1990)

    MathSciNet  MATH  Google Scholar 

  48. Deckelnick, K., Elliott, C.M.: Local and global existence results for anisotropic Hele-Shaw flows. Proc. R. Soc. Edinb. A 129, 265–294 (1999)

    MathSciNet  MATH  Google Scholar 

  49. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    MathSciNet  MATH  Google Scholar 

  50. De Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347(5), 1533–1589 (1995)

    MATH  Google Scholar 

  51. Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces. Revised and Enlarged, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 339. Springer, Heidelberg (2010), xvi+688 pp.

    Google Scholar 

  52. Dinghas, A.: Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen. Z. Kristallogr. 105, 304–314 (1944)

    MathSciNet  MATH  Google Scholar 

  53. Duchon, J., Robert, R.: Evolution d’une interface par capillarité et diffusion de volume I. Existence locale en temps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 361–378 (1984)

    MathSciNet  MATH  Google Scholar 

  54. Dupaix, C., Hilhorst, D., Kostin, I.N.: The viscous Cahn-Hilliard equation as a limit of the phase field model: lower semicontinuity of the attractor. J. Dyn. Differ. Equ. 11(2), 333–353 (1999). (English summary)

    MathSciNet  MATH  Google Scholar 

  55. Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58, 603–611 (1991)

    MathSciNet  MATH  Google Scholar 

  56. Eck, C., Garcke, H., Knabner, P.: Mathematische Modellierung. Springer, Berlin (2011). xiv+513 pp., Revised second edn.

    MATH  Google Scholar 

  57. Ecker, K.: Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and Their Applications, vol. 57. Birkhäuser, Boston (2004), xiv+165 pp.

    MATH  Google Scholar 

  58. Ecker, K.: Heat equations in geometry and topology. Jahresber. Dtsch. Math.-Ver. 110(3), 117–141 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Efendiev, M.A., Gajewski, H., Zelik, S.: The finite dimensional attractor for a 4th order system of Cahn-Hilliard type with a supercritical nonlinearity. Adv. Differ. Equ. 7(9), 1073–1100 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Eilks, C., Elliott, C.M.: Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method. J. Comput. Phys. 227(23), 9727–9741 (2008)

    MathSciNet  MATH  Google Scholar 

  61. Elliott, C.M.: The Cahn-Hilliard model for the kinetics of phase separation. In: Mathematical Models for Phase Change Problems, Óbidos, 1988. Internat. Ser. Numer. Math., vol. 88, pp. 35–73. Birkhäuser, Basel (1989)

    Google Scholar 

  62. Elliott, C.M., Garcke, H.: On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27(2), 404–423 (1996)

    MathSciNet  MATH  Google Scholar 

  63. Elliott, C.M., Garcke, H.: Existence results for diffusive surface motion laws. Adv. Math. Sci. Appl. 7(1), 467–490 (1997)

    MathSciNet  MATH  Google Scholar 

  64. Elliott, C.M., Maier-Paape, S.: Losing a graph with surface diffusion. Hokkaido Math. J. 30, 297–305 (2001)

    MathSciNet  MATH  Google Scholar 

  65. Elliott, C.M., Ockendon, J.R.: Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston (1982)

    MATH  Google Scholar 

  66. Elliott, C.M., Zheng, S.: On the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 96(4), 339–357 (1986)

    MathSciNet  MATH  Google Scholar 

  67. Elliott, C.M., Zheng, S.: Global existence and stability of solutions to the phase field equations. In: Free Boundary Value Problems, Oberwolfach, 1989. Internat. Ser. Numer. Math., vol. 95, pp. 46–58. Birkhäuser, Basel (1990)

    Google Scholar 

  68. Escher, J.: The Dirichlet-Neumann operator on continuous functions. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4(21), 235–266 (1994)

    MathSciNet  Google Scholar 

  69. Escher, J.: Funktionalanalytische Methoden bei freien Randwertaufgaben. Jahresber. Dtsch. Math.-Ver. 109(4), 195–219 (2007)

    MathSciNet  MATH  Google Scholar 

  70. Escher, J., Simonett, G.: Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Equ. 2(4), 619–642 (1997)

    MathSciNet  MATH  Google Scholar 

  71. Escher, J., Simonett, G.: A center manifold analysis for the Mullins-Sekerka model. J. Differ. Equ. 143(2), 267–292 (1998)

    MathSciNet  MATH  Google Scholar 

  72. Escher, J., Mayer, U., Simonett, G.: The surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal. 29(6), 1419–1433 (1998)

    MathSciNet  MATH  Google Scholar 

  73. Escher, J., Prüss, J., Simonett, G.: Analytic solutions for a Stefan problem with Gibbs-Thomson correction. J. Reine Angew. Math. 563, 1–52 (2003)

    MathSciNet  MATH  Google Scholar 

  74. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45(9), 1097–1123 (1992)

    MathSciNet  MATH  Google Scholar 

  75. Evans, C., Spruck, J.: Motion by mean curvature I. J. Differ. Geom. 33, 635–681 (1991)

    MathSciNet  MATH  Google Scholar 

  76. Fife, P.C.: Models for phase separation and their mathematics. In: Mimura, M., Nishida, T. (eds.) Nonlinear Partial Differential Equations and Applications. KTK, Tokyo (1993)

    Google Scholar 

  77. Fife, P.C.: Barrett Lecture Notes (1991). University of Tennessee

    Google Scholar 

  78. Fonseca, I.: The Wulff theorem revisited. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 432(1884), 125–145 (1991)

    MathSciNet  MATH  Google Scholar 

  79. Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. A 119(1–2), 125–136 (1991)

    MATH  Google Scholar 

  80. Friedman, A.: Variational Principles and Free Boundary Problems. Wiley/Interscience, New York (1982)

    MATH  Google Scholar 

  81. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–95 (1986)

    MathSciNet  MATH  Google Scholar 

  82. Garcke, H.: Mechanical effects in the Cahn-Hilliard model: a review on mathematical results. In: Miranville, A. (ed.) Mathematical Methods and Models in Phase Transitions, pp. 43–77. Nova Science, New York (2005)

    Google Scholar 

  83. Garcke, H.: Kepler, Kristalle und Computer. Mathematik und numerische Simulationen helfen Kristallwachstum zu verstehen. MDMV 20, 219–228 (2012)

    MathSciNet  MATH  Google Scholar 

  84. Garcke, H., Nestler, B., Stinner, B.: A diffuse interface model for alloys with multiple components and phases. SIAM J. Appl. Math. 64(3), 775–799 (2004)

    MathSciNet  MATH  Google Scholar 

  85. Garcke, H., Schaubeck, S.: Existence of weak solutions for the Stefan problem with anisotropic Gibbs-Thomson law. Adv. Math. Sci. Appl. 21(1), 255–283 (2011)

    MathSciNet  MATH  Google Scholar 

  86. Garcke, H., Sturzenhecker, T.: The degenerate multi-phase Stefan problem with Gibbs-Thomson law. Adv. Math. Sci. Appl. 8(2), 929–941 (1998)

    MathSciNet  MATH  Google Scholar 

  87. Garcke, H., Wieland, S.: Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal. 37(6), 2025–2048 (2006)

    MathSciNet  MATH  Google Scholar 

  88. Giga, Y.: Anisotropic curvature effects in interface dynamics. Sūgaku Expo. 52, 113–117 (2000). English translation, Sugaku Expositions 16, 135–152 (2003)

    MathSciNet  MATH  Google Scholar 

  89. Giga, Y.: Singular diffusivity—facets, shocks and more. In: Hill, J.M., Moore, R. (eds.) Applied Math. Entering the 21st Century, pp. 121–138. ICIAM, Sydney (2003). SIAM, Philadelphia 2004

    Google Scholar 

  90. Giga, Y.: Surface Evolution Equations. A Level Set Approach. Monographs in Mathematics, vol. 99. Birkhäuser, Basel (2006), xii+264 pp.

    MATH  Google Scholar 

  91. Giga, M.-H., Giga, Y.: On the role of kinetic and interfacial anisotropy in the crystal growth theory. Preprint (2013)

  92. Giga, M.-H., Giga, Y.: Very singular diffusion equations: second and fourth order problems. Jpn. J. Ind. Appl. Math. 27, 323–345 (2010)

    MathSciNet  MATH  Google Scholar 

  93. Giga, Y., Ito, K.: Loss of convexity of simple closed curves moved by surface diffusion. In: Topics in Nonlinear Analysis. Progr. Nonlinear Differential Equations Appl., vol. 35, pp. 305–320. Birkhäuser, Basel (1999)

    Google Scholar 

  94. Giga, Y., Ito, K.: On pinching of curves moved by surface diffusion. Commun. Appl. Anal. 2(3), 393–406 (1998)

    MathSciNet  MATH  Google Scholar 

  95. Giga, Y., Rybka, P.: Quasi-static evolution of 3-D crystals grown from supersaturated vapor. J. Differ. Equ. 15, 1–15 (2003)

    MathSciNet  Google Scholar 

  96. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften, vol. 224. Springer, Berlin (1998), xiii+517 pp.

    Google Scholar 

  97. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984), xii+240 pp.

    MATH  Google Scholar 

  98. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987)

    MathSciNet  MATH  Google Scholar 

  99. Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Applied Mathematical Sciences, vol. 137. Springer, New York (2000), vii+249 pp.

    Google Scholar 

  100. Gurtin, M.G.: Thermodynamics of Evolving Phase Boundaries in the Plane. Clarendon, Oxford (1993)

    Google Scholar 

  101. Hadžić, M., Guo, Y.: Stability in the Stefan problem with surface tension (I). Commun. Partial Differ. Equ. 35(2), 201–244 (2010)

    MATH  Google Scholar 

  102. Hanzawa, E.: Classical solutions of the Stefan problem. Tohoku Math. J. 33(3), 297–335 (1981)

    MathSciNet  MATH  Google Scholar 

  103. Hildebrandt, S., Tromba, A.: The Parsimonious Universe. Shape and Form in the Natural World. Copernicus, New York (1996), xiv+330

    Google Scholar 

  104. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    MathSciNet  MATH  Google Scholar 

  105. Huisken, G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)

    MathSciNet  MATH  Google Scholar 

  106. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    MathSciNet  MATH  Google Scholar 

  107. Huisken, G.: Local and global behaviour of hypersurfaces moving by mean curvature. Proc. Symp. Pure Math. 54, 175–191 (1993)

    MathSciNet  Google Scholar 

  108. Ilmanen, T.: Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38(2), 417–461 (1993)

    MathSciNet  MATH  Google Scholar 

  109. Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Amer. Math. Soc. 108(520) (1994), x+90 pp.

  110. Kohn, R.V., Otto, F.: Upper bounds on coarsening rates. Commun. Math. Phys. 229(3), 375–395 (2002)

    MathSciNet  MATH  Google Scholar 

  111. Kraus, C.: The degenerate and non-degenerate Stefan problem with inhomogeneous and anisotropic Gibbs-Thomson law. Eur. J. Appl. Math. 22(5), 393–422 (2011)

    MathSciNet  MATH  Google Scholar 

  112. Libbrecht, K.G.: The Snowflake. Winter’s Secret Beauty (2003). Voyageur Press

    Google Scholar 

  113. Libbrecht, K.G.: Morphogenesis on Ice: the physics of snow crystals. Engineering & Science 1 (2001)

  114. Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)

    Google Scholar 

  115. Luckhaus, S.: Solutions for the two-phase Stefan problem with the Gibbs–Thomson law for the melting temperature. Eur. J. Appl. Math. 1(2), 101–111 (1990)

    MathSciNet  MATH  Google Scholar 

  116. Luckhaus, S., Sturzenhecker, T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3(2), 253–271 (1995)

    MathSciNet  MATH  Google Scholar 

  117. Mantegazza, C.: Lecture Notes on Mean Curvature Flow. Progress in Mathematics, vol. 290. Springer, Basel (2011), xii+166 pp.

    MATH  Google Scholar 

  118. Mayer, U.F.: Two-sided Mullins-Sekerka flow does not preserve convexity. Electr. J. Differ. Equ. 1, 171–179 (1998)

    Google Scholar 

  119. Mayer, U.F.: A numerical scheme for moving boundary problems that are gradient flows for the area functional. Eur. J. Appl. Math. 11, 61–80 (2000)

    MATH  Google Scholar 

  120. Mayer, U.F., Simonett, G.: Self-intersections for the surface diffusion and the volume-preserving mean curvature flow. Differ. Integral Equ. 13(7–9), 1189–1199 (2000)

    MathSciNet  MATH  Google Scholar 

  121. Meirmanov, A.M.: The Stefan Problem. De Gruyter, Berlin (1992)

    MATH  Google Scholar 

  122. Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162(2), 137–177 (2002)

    MathSciNet  MATH  Google Scholar 

  123. Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27(5), 545–582 (2004)

    MathSciNet  MATH  Google Scholar 

  124. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    MathSciNet  MATH  Google Scholar 

  125. Modica, L., Mortola, S.: Un esempio di Γ-convergenza. Boll. Unione Mat. Ital, B 14(5), 285–299 (1977)

    MathSciNet  MATH  Google Scholar 

  126. Morgan, F.: Geometric Measure Theory. A Beginner’s Guide, 4th edn. Elsevier, Amsterdam (2009)

    MATH  Google Scholar 

  127. Mucha, P.: Regular solutions to a monodimensional model with discontinuous elliptic operator. Interfaces Free Bound. 14, 145–152 (2012)

    MathSciNet  MATH  Google Scholar 

  128. Mucha, P.: On weak solutions to the Stefan problem with Gibbs-Thomson correction. Differ. Integral Equ. 20(7), 769–792 (2007)

    MathSciNet  MATH  Google Scholar 

  129. Mucha, P., Rybka, P.: A note on a model system with sudden directional diffusion. J. Stat. Phys. 146, 975–988 (2012)

    MathSciNet  MATH  Google Scholar 

  130. Mullins, W.W.: Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900–904 (1956)

    MathSciNet  Google Scholar 

  131. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Google Scholar 

  132. Niethammer, B.: Derivation of the LSW-theory for Ostwald ripening by homogenization methods. Arch. Ration. Mech. Anal. 147(2), 119–178 (1999)

    MathSciNet  MATH  Google Scholar 

  133. Niethammer, B., Otto, F.: Ostwald ripening: the screening length revisited. Calc. Var. PDE 13(1), 33–68 (2001)

    MathSciNet  MATH  Google Scholar 

  134. Niethammer, B., Pego, R.L.: Non-self-similar behavior in the LSW theory of Ostwald ripening. J. Stat. Phys. 95(5–6), 867–902 (1999)

    MathSciNet  MATH  Google Scholar 

  135. Novick-Cohen, A.: On the Viscous Cahn-Hilliard Equation, Edinburgh, 1985–1986. Material Instabilities in Continuum Mechanics, pp. 329–342. Oxford Sci. Publ., New York (1988)

    Google Scholar 

  136. Novick-Cohen, A.: The Cahn-Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8(2), 965–985 (1998)

    MathSciNet  MATH  Google Scholar 

  137. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003), xiv+273 pp.

    MATH  Google Scholar 

  138. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    MathSciNet  MATH  Google Scholar 

  139. Pego, R.L.: Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 422(1863), 261–278 (1989)

    MathSciNet  MATH  Google Scholar 

  140. Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43(1), 44–62 (1990)

    MathSciNet  MATH  Google Scholar 

  141. Plotnikov, P.I., Starovoitov, V.N.: Stefan problem with surface tension as a limit of the phase field model. Differ. Equ. 29(3), 395–404 (1993)

    MathSciNet  Google Scholar 

  142. Prüss, J., Simonett, G.: Stability of equilibria for the Stefan problem with surface tension. SIAM J. Math. Anal. 40(2), 675–698 (2008)

    MathSciNet  MATH  Google Scholar 

  143. Prüss, J., Simonett, G., Zacher, R.: On normal stability for nonlinear parabolic equations. Discrete Contin. Dyn. Syst. 2009(suppl.), 612–621 (2009). 7th AIMS Conference on Dynamical Systems, Differential Equations and Applications

    MATH  Google Scholar 

  144. Prüss, J., Simonett, G.: On the two-phase Navier-Stokes equations with surface tension. Interfaces Free Bound. 12(3), 311–345 (2010)

    MathSciNet  MATH  Google Scholar 

  145. Radkevich, E.V.: The Gibbs-Thompson correction and conditions for the existence of a classical solution of the modified Stefan problem. Dokl. Akad. Nauk SSSR 316(6), 1311–1315 (1991). Translation in Soviet Math. Dokl. 43(1), 274–278 (1991)

    Google Scholar 

  146. Ritoré, M., Sinestrari, C.: Mean Curvature Flow and Isoperimetric Inequalities. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

  147. Röger, M.: Existence of weak solutions for the Mullins-Sekerka flow. SIAM J. Math. Anal. 37(1), 291–301 (2005)

    MathSciNet  MATH  Google Scholar 

  148. Rossi, R., Savaré, G.: Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM Control Optim. Calc. Var. 12, 564–614 (2006)

    MathSciNet  MATH  Google Scholar 

  149. Rubinstein, L.I.: The Stefan Problem. AMS Translation, vol. 27. Am. Math. Soc., Providence (1971)

    Google Scholar 

  150. Rybka, P., Hoffmann, K.-H.: Convergence of solutions to Cahn-Hilliard equation. Commun. Partial Differ. Equ. 24(5–6), 1055–1077 (1999)

    MathSciNet  MATH  Google Scholar 

  151. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  152. Schätzle, R.: The quasistationary phase field equations with Neumann boundary conditions. J. Differ. Equ. 162(2), 473–503 (2000)

    MATH  Google Scholar 

  153. Schätzle, R.: Hypersurfaces with mean curvature given by an ambient Sobolev function. J. Differ. Geom. 58(3), 371–420 (2001)

    MATH  Google Scholar 

  154. Schmidt, A.: Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 195, 293–312 (1996)

    Google Scholar 

  155. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry Fluid Mechanics, Computer Vision, and Materials Science, 2nd edn. Cambridge Monographs on Applied and Computational Mathematics, vol. 3. Cambridge University Press, Cambridge (1999), xx+378

    MATH  Google Scholar 

  156. Sethian, J.A.: Curvature and the evolution of fronts. Commun. Math. Phys. 101(4), 487–499 (1985)

    MathSciNet  MATH  Google Scholar 

  157. Soner, H.M.: Motion of a set by the curvature of its boundary. J. Differ. Equ. 101, 313–372 (1993)

    MathSciNet  MATH  Google Scholar 

  158. Soner, H.M.: Convergence of the phase field equations to the Mullins-Sekerka problem with kinetic undercooling. Arch. Ration. Mech. Anal. 131, 139–197 (1995)

    MathSciNet  MATH  Google Scholar 

  159. Solonnikov, V.A.: Unsteady flow of a finite mass of a fluid bounded by a free surface. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152 (1986), Kraev. Zadachi Mat. Fiz. i Smezhnye Vopr. Teor. Funktsii 18, 137–157, 183–184; translation in J. Soviet Math. 40(5), 672–686 (1988)

  160. Spencer, B.J., Voorhees, P.W., Davis, S.H.: Morphological instability in epitaxially strained dislocation-free solid films. Phys. Rev. Lett. 67, 3696–3699 (1991)

    Google Scholar 

  161. Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)

    MathSciNet  Google Scholar 

  162. Stoth, B.: Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. J. Differ. Equ. 125(1), 154–183 (1996)

    MathSciNet  MATH  Google Scholar 

  163. Stoth, B.: A sharp interface limit of the phase field equations: one-dimensional and axisymmetric. Eur. J. Appl. Math. 7(6), 603–633 (1996)

    MathSciNet  MATH  Google Scholar 

  164. Taylor, J.E.: Crystalline variational problems. Bull. Am. Math. Soc. 84(4), 568–588 (1978)

    MATH  Google Scholar 

  165. Taylor, J.E.: Constructions and conjectures in crystalline nondifferential geometry. In: Lawson, B., Tanenblat, K. (eds.) Differential Geometry. Proceedings of the Conference on Differential Geometry, Rio de Janeiro, 1991. Pitman Monographs Surveys Pure Appl. Math., vol. 52, pp. 321–336 (1991)

    Google Scholar 

  166. Taylor, J.E.: Mean curvature and weighted mean curvature. Acta Metall. Mater. 40(7), 1475–1485 (1992)

    Google Scholar 

  167. Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77(1–2), 183–197 (1994)

    MathSciNet  MATH  Google Scholar 

  168. Taylor, J.E., Cahn, J.W., Handwerker, C.A.: Geometric models of crystal growth. Acta Metall. Mater. 40(7), 1443–1474 (1992)

    Google Scholar 

  169. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988), xxi+648 pp.

    MATH  Google Scholar 

  170. Villani, C.: Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009), xxii+973 pp.

    MATH  Google Scholar 

  171. Visintin, A.: Models of Phase Transitions. Progress in Nonlinear Differential Equations and Their Applications, vol. 28. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  172. Voorhees, P.W.: The theory of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985)

    Google Scholar 

  173. Voorhees, P.W.: Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci. 22, 197–215 (1992)

    Google Scholar 

  174. Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen. Z. Elektrochem. 65, 581–594 (1961)

    Google Scholar 

  175. Wang, S.-L., Sekerka, R.F., Wheeler, A.A., Murray, B.T., Coriell, S.R., Braun, R.J., McFadden, G.B.: Thermodynamically-consistent phase-field models for solidification. Physica D: Nonlinear Phenomena 69(1–2), 189–200 (1993)

    MathSciNet  MATH  Google Scholar 

  176. Wheeler, G.: Surface diffusion flow near spheres. Calc. Var. Partial Differ. Equ. 44(1–2), 131–151 (2012)

    MATH  Google Scholar 

  177. Wheeler, G.: On the Curve Diffusion Flow of Closed Plane Curves. Annali di Matematica Pura ed Applicata (2012)

    Google Scholar 

  178. White, B.: Evolution of curves and surfaces by mean curvature. In: Proceedings of the International Congress of Mathematicians, vol. 1, Beijing, 2002, pp. 525–538 (2002)

    Google Scholar 

  179. Wulff, G.: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen. Z. Kristallogr. 34, 449–530 (1901)

    Google Scholar 

  180. Zheng, S.: Asymptotic behavior of solutions to the Cahn-Hilliard equation. Appl. Anal. 23, 165–184 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Figures 13, 5, 812 are numerical computations by Robert Nürnberg (Imperial College, London) and they were performed in the context of the work [813]. Figure 6 has been provided by Ulrich Weikard. Helmut Abels, Klaus Deckelnick, Daniel Depner, Hans-Christoph Grunau, Claudia Hecht, Barbara Niethammer and Matthias Röger made helpful suggestions which improved the presentation. I would like to express my gratitude to all the above mentioned colleagues for their contributions and to Eva Rütz for typing my often very rough notes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Garcke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcke, H. Curvature Driven Interface Evolution. Jahresber. Dtsch. Math. Ver. 115, 63–100 (2013). https://doi.org/10.1365/s13291-013-0066-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-013-0066-2

Keywords

Mathematics Subject Classification (2000)

Navigation