Skip to main content

Advertisement

Log in

Diagnostic and Prognostic Relevance of MMP-11 Expression in the Stromal Fibroblast-Like Cells Adjacent to Invasive Ductal Carcinoma of the Breast

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

ABSTRACT

Background

Matrix metalloproteinase 11 (MMP-11) is a matrix degrading enzyme known to be involved in the remodeling of extracellular matrix proteins. This enzyme recently has been reported to play a key role in tumor progression and results in poor clinical outcomes for several different types of tumors.

Methods

A total of 192 patients diagnosed with invasive ductal carcinoma between 2000 and 2005 were included in this study. MMP-11 expression in tumors and stromal fibroblast-like cells was analyzed by immunohistochemical staining on a tissue microarray. Subsequently, evaluation of the associations between MMP-11 expression and clinicopathological characteristics was performed.

Results

MMP-11 expression of stromal fibroblast-like cells was correlated with prognostic factors, including tumor size, metastasis, histological grade, central tumor fibrosis, p53 expression, and luminal A subtype and was linked to therapeutic markers, such as ER and HER2 (all p < 0.05). There was a significant relationship between worse overall survival and MMP-11 expression in both tumors and stromal fibroblast-like cells (all p < 0.05). In multivariate analysis, MMP-11 expression of stromal fibroblast-like cells was still significantly associated with poor prognosis (p = 0.043).

Conclusions

MMP-11 expression was significantly related to clinicopathological parameters, which may be essential to the prediction of disease outcome in patients with invasive ductal carcinoma of the breast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Dixon JM, Page DL, Anderson TJ, et al. Long-term survivors after breast cancer. Br J Surg. 1985;72:445–8.

    Article  PubMed  CAS  Google Scholar 

  3. Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit. 2009;15:RA32–40.

    PubMed  CAS  Google Scholar 

  4. Peppercorn J, Perou CM, Carey LA. Molecular subtypes in breast cancer evaluation and management: divide and conquer. Cancer Invest. 2008;26:1–10.

    Article  PubMed  CAS  Google Scholar 

  5. Yurchenco PD, Schittny JC. Molecular architecture of basement membranes. FASEB J. 1990;4:1577–90.

    PubMed  CAS  Google Scholar 

  6. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000;18:1135–49.

    PubMed  CAS  Google Scholar 

  7. Wolf C, Rouyer N, Lutz Y, et al. Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Nati Acad Sci. 1993;90:1843–7.

    Article  CAS  Google Scholar 

  8. Engel G, Heselmeyer K, Auer G, Backdahl M, Eriksson E, Linder S. Correlation between stromelysin-3 mRNA level and outcome of human breast cancer. Int J Cancer. 1994;58:830–5.

    Article  PubMed  CAS  Google Scholar 

  9. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999;13:781–92.

    PubMed  CAS  Google Scholar 

  10. Pei D, Majmudar G, Weiss SJ. Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem. 1994;269:25849–55.

    PubMed  CAS  Google Scholar 

  11. Kahari VM, Saarialho-Kere U. Matrix metalloproteinases in skin. Exp Dermatol. 1997;6:199–213.

    Article  PubMed  CAS  Google Scholar 

  12. Basset P, Bellocq JP, Wolf C, et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature. 1990;348:699–704.

    Article  PubMed  CAS  Google Scholar 

  13. Okada A, Bellocq JP, Rouyer N, et al. Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Nati Acad Sci. 1995;92:2730–4.

    Article  CAS  Google Scholar 

  14. Takeuchi T, Adachi Y, Nagayama T, Furihata M. Matrix metalloproteinase-11 overexpressed in lobular carcinoma cells of the breast promotes anoikis resistance. Virchows Archiv. 2011;459:291–7.

    Article  PubMed  CAS  Google Scholar 

  15. Nakopoulou L, Panayotopoulou EG, Giannopoulou I, et al. Stromelysin-3 protein expression in invasive breast cancer: relation to proliferation, cell survival and patients’ outcome. Mod Pathol. 2002;15:1154–61.

    Article  PubMed  Google Scholar 

  16. Cheng CW, Yu JC, Wang HW, et al. The clinical implications of MMP-11 and CK-20 expression in human breast cancer. Clin Chim Acta. 2010;411:234–41.

    Article  PubMed  CAS  Google Scholar 

  17. Asch PH, Basset P, Roos M, Grosshans E, Bellocq JP, Cribier B. Expression of stromelysin 3 in keratoarcanthoma and squamous cell carcinoma. Am J Dermatopathol. 1999;21:146–50.

    Article  PubMed  CAS  Google Scholar 

  18. Anderson IC, Sugarbaker DJ, Ganju RK, et al. Stromelysin-3 is overexpressed by stromal elements in primary non-small cell lung cancers and regulated by retinoic acid in pulmonary fibroblasts. Cancer Res. 1995;55:4120–6.

    PubMed  CAS  Google Scholar 

  19. Munck-Wikland E, Heselmeyer K, Lindholm J, Kuylenstierna R, Auer G, Engel G. Stromelysin-3 mRNA expression in dysplasias and invasive epithelial cancer of the larynx. Int J Oncol. 1998;12:859–64.

    PubMed  CAS  Google Scholar 

  20. Masson R, Lefebvre O, Noel A, et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol. 1998;140:1535–41.

    Article  PubMed  CAS  Google Scholar 

  21. Peruzzi D, Mori F, Conforti A, et al. MMP11: a novel target antigen for cancer immunotherapy. Clin Cancer Res. 2009;15:4104–13.

    Article  PubMed  CAS  Google Scholar 

  22. Genestie C, Zafrani B, Asselain B, et al. Comparison of the prognostic value of Scarff-Bloom-Richardson and Nottingham histological grades in a series of 825 cases of breast cancer: major importance of the mitotic count as a component of both grading systems. Anticancer Res. 1998;18:571–6.

    PubMed  CAS  Google Scholar 

  23. Robbins P, Pinder S, de Klerk N, et al. Histological grading of breast carcinomas: a study of interobserver agreement. Hum Pathol. 1995;26:873–9.

    Article  PubMed  CAS  Google Scholar 

  24. Sousa B, Paredes J, Milanezi F, et al. P-cadherin, vimentin and CK14 for identification of basal-like phenotype in breast carcinomas: an immunohistochemical study. Histol Histopathol. 2010;25:963–74.

    PubMed  Google Scholar 

  25. Del Casar JM, Gonzalez LO, Alvarez E, et al. Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumor stromal fibroblasts and those at the invasive front of breast carcinomas. Breast Cancer Res Treat. 2009;116:39–52.

    Article  PubMed  Google Scholar 

  26. Remmele W, Stegner HE. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe. 1987;8:138–40.

    PubMed  CAS  Google Scholar 

  27. Gonzalez LO, Pidal I, Junquera S, et al. Overexpression of matrix metalloproteinases and their inhibitors in mononuclear inflammatory cells in breast cancer correlates with metastasis-relapse. Br J Cancer. 2007;97:957–63.

    PubMed  CAS  Google Scholar 

  28. Gonzalez LO, Corte MD, Junquera S, et al. Expression and prognostic significance of metalloproteases and their inhibitors in luminal A and basal-like phenotypes of breast carcinoma. Hum Pathol. 2009;40:1224–33.

    Article  PubMed  CAS  Google Scholar 

  29. Gonzalez LO, Gonzalez-Reyes S, Marin L, et al. Comparative analysis and clinical value of the expression of metalloproteases and their inhibitors by intratumour stromal mononuclear inflammatory cells and those at the invasive front of breast carcinomas. Histopathology. 2010;57:862–76.

    Article  PubMed  Google Scholar 

  30. Garcia MF, Gonzalez-Reyes S, Gonzalez LO, et al. Comparative study of the expression of metalloproteases and their inhibitors in different localizations within primary tumours and in metastatic lymph nodes of breast cancer. Int J Exp Pathol. 2010;91:324–34.

    Article  PubMed  CAS  Google Scholar 

  31. Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr Opin Genet Dev. 2009;19:67–73.

    Article  PubMed  Google Scholar 

  32. Behrens P, Rothe M, Wellmann A, Krischler J, Wernert N. The Ets-1 transcription factor is up-regulated together with MMP 1 and MMP 9 in the stroma of pre-invasive breast cancer. J Pathol. 2001;194:43–50.

    Article  PubMed  CAS  Google Scholar 

  33. Sato T, Sakai T, Noguchi Y, Takita M, Hirakawa S, Ito A. Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol Oncol. 2004;92:47–56.

    Article  PubMed  CAS  Google Scholar 

  34. Vizoso FJ, Gonzalez LO, Corte MD, et al. Study of matrix metalloproteinases and their inhibitors in breast cancer. Br J Cancer. 2007;96:903–11.

    Article  PubMed  CAS  Google Scholar 

  35. Drac P, Klein J, Tichy T, Kolek V, Skarda J. [Prognostic impact of matrix metalloproteinases 2,9, and 11 in stromal cells stage I non-small cell lung cancer]. Cas Lek Cesk. 2007;146:45–7.

    PubMed  CAS  Google Scholar 

  36. Perigny M, Bairati I, Harvey I, et al. Role of immunohistochemical overexpression of matrix metalloproteinases MMP-2 and MMP-11 in the prognosis of death by ovarian cancer. Am J Clin Pathol. 2008;129:226–31.

    Article  PubMed  Google Scholar 

  37. Thewes M, Worret WI, Engst R, Ring J. Stromelysin-3 (ST-3): immunohistochemical characterization of the matrix metalloproteinase (MMP)-11 in benign and malignant skin tumours and other skin disorders. Clin Exp Dermatol. 1999;24:122–6.

    Article  PubMed  CAS  Google Scholar 

  38. Ito Y, Yoshida H, Kakudo K, Nakamura Y, Kuma K, Miyauchi A. Inverse relationships between the expression of MMP-7 and MMP-11 and predictors of poor prognosis of papillary thyroid carcinoma. Pathology. 2006;38:421–5.

    Article  PubMed  CAS  Google Scholar 

  39. Ahmad A, Hanby A, Dublin E, et al. Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol. 1998;152:721–8.

    PubMed  CAS  Google Scholar 

  40. Selvey S, Haupt LM, Thompson EW, Matthaei KI, Irving MG, Griffiths LR. Stimulation of MMP-11 (stromelysin-3) expression in mouse fibroblasts by cytokines, collagen and co-culture with human breast cancer cell lines. BMC Cancer. 2004;4:40.

    Article  PubMed  Google Scholar 

  41. Tetu B, Brisson J, Wang CS, Lapointe H, Beaudry G, Blanchette C. Expression of cathepsin D, stromelysin-3, and urokinase by reactive stromal cells on breast carcinoma prognosis. Cancer. 2001;92:2957–64.

    Article  PubMed  CAS  Google Scholar 

  42. Chenard MP, O’Siorain L, Shering S, et al. High levels of stromelysin-3 correlate with poor prognosis in patients with breast carcinoma. Int J Cancer. 1996;69:448–51.

    Article  PubMed  CAS  Google Scholar 

  43. Hahnel E, Harvey JM, Joyce R, Robbins PD, Sterrett GF, Hahnel R. Stromelysin-3 expression in breast cancer biopsies: clinico-pathological correlations. Int J Cancer. 1993;55:771–4.

    Article  PubMed  CAS  Google Scholar 

  44. Hahnel R. Prospective-study of stromelysin-3 expression in breast-cancer biopsies and disease-free survival. Int J Oncol. 1995;7:1315–8.

    PubMed  CAS  Google Scholar 

  45. Kwon YJ, Hurst DR, Steg AD, et al. Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERalpha negative breast cancer cell lines. Clin Exp Metastasis. 2011;28:437–49.

    Article  PubMed  CAS  Google Scholar 

  46. Decock J, Hendrickx W, Drijkoningen M, et al. Matrix metalloproteinase expression patterns in luminal A type breast carcinomas. Dis Markers. 2007;23:189–96.

    Article  PubMed  CAS  Google Scholar 

  47. Kasper G, Reule M, Tschirschmann M, et al. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway. BMC Cancer. 2007;7:12.

    Article  PubMed  Google Scholar 

  48. Jia L, Cao J, Wei W, Wang S, Zuo Y, Zhang J. CD147 depletion down-regulates matrix metalloproteinase-11, vascular endothelial growth factor-A expression and the lymphatic metastasis potential of murine hepatocarcinoma Hca-F cells. Int J Biochem Cell Biol. 2007;39:2135–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr. Min Kim at the Department of Ophthalmology, Yonsei Medical Center, Dr. Hack Lyoung Kim at the Department of Internal Medicine, Seoul National University Hospital, and English teacher Joung Woo Hong for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hoon Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, KW., Kim, DH., Do, SI. et al. Diagnostic and Prognostic Relevance of MMP-11 Expression in the Stromal Fibroblast-Like Cells Adjacent to Invasive Ductal Carcinoma of the Breast. Ann Surg Oncol 20 (Suppl 3), 433–442 (2013). https://doi.org/10.1245/s10434-012-2734-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2734-3

Keywords

Navigation