Skip to main content
Log in

Jun Activation Domain Binding Protein 1 is Overexpressed from the Very Early Stages of Hepatocarcinogenesis

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

As is known for many types of human cancers, the hepatocellular carcinoma (HCC) associated with chronic liver disease shows an obvious multistage process of tumor progression. Despite the demonstrated importance of cell-cycle regulators in tumor biology, there have only been a few studies of their role in multistep hepatocarcinogenesis. Recently, we reported that a high level of p27Kip1 expression is evident from the very early stages of hepatocarcinogenesis.

Methods

In the present study, expression of p27Kip1 and Jun activation domain binding protein-1 (Jab1), which is a key molecule involved in posttranslational regulation of p27Kip1, was evaluated in surgically resected specimens of 8 dysplastic nodules (DNs), 16 early HCCs, and 126 classical HCCs.

Results

Immunohistochemistry revealed no Jab1 expression in the majority of hepatocytes in noncancerous normal liver tissue and cases of chronic hepatitis or cirrhosis. In contrast, Jab1 was overexpressed in 50% (4/8) and 50% (8/16) of DNs and early HCCs, respectively, and the labeling index was increased in line with the degree of loss of differentiation in classical HCCs. Real-time quantitative reverse transcription polymerase chain reactions revealed the Jab1 mRNA levels in all tested early and well-differentiated HCCs to be increased compared with matched nontumorous liver specimens. The Spearman coefficient pointed to a high correlation between p27Kip1 and Jab1 mRNA expression levels (P = 0.0014).

Conclusions

Jab1 expression, as well as p27Kip1 upregulation, is evident from the very early stages of hepatocarcinogenesis, suggesting that Jab1 could be a diagnostic marker and a treatment target for precancerous lesions and early HCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Sakamoto M, Hirohashi S, Shimosato Y. Early stages of multistep hepatocarcinogenesis: adenomatous hyperplasia and early hepatocellular carcinoma. Human Pathol. 1991;22:172–8.

    Article  CAS  Google Scholar 

  3. Sakamoto M, Hirohashi S. Natural history and prognosis of adenomatous hyperplasia and early hepatocellular carcinoma: multi-institutional analysis of 53 nodules followed up for more than 6 months and 141 patients with single early hepatocellular carcinoma treated by surgical resection or percutaneous ethanol injection. Jpn J Clin Oncol. 1998;28:604–8.

    Article  CAS  PubMed  Google Scholar 

  4. Oikawa T, Ojima H, Yamasaki S, Takayama T, Hirohashi S, Sakamoto M. Multistep and multicentric development of hepatocellular carcinoma: histological analysis of 980 resected nodules. J Hepatol. 2005;42:225–9.

    Article  PubMed  Google Scholar 

  5. Takayama T, Makuuchi M, Hirohashi S, et al. Malignant transformation of adenomatous hyperplasia to hepatocellular carcinoma. Lancet. 1990;336:1150–3.

    Article  CAS  PubMed  Google Scholar 

  6. Takayama T, Makuuchi M, Kojiro M, et al. Early hepatocellular carcinoma: pathology, imaging, and therapy. Ann Surg Oncol. 2008;15:972–8.

    Article  PubMed  Google Scholar 

  7. Hirohashi S, Ishak KG, Kojiro M, et al. Hepatocellular carcinoma. In: Hamilton SR, Aaltonen LA, eds. Pathology and genetics of tumors of the digestive system. Lyon: IARC Press, 2000:159–72.

    Google Scholar 

  8. Morimitsu Y, Hsia CC, Kojiro M, Tabor E. Nodules of less-differentiated tumor within or adjacent to hepatocellular carcinoma: reactive expression of transforming growth factor-alpha and its receptor in the different areas of tumor. Human Pathol. 1995;26:1126–32.

    Article  CAS  Google Scholar 

  9. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ. The murine gene p27Kip1 is heplo-insufficient for tumor suppression. Nature. 1998;396:177–80.

    Article  CAS  PubMed  Google Scholar 

  10. Lee MH, Reynisdottir I, Massagué J. Cloning of p57KIP2, A cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 1995;9:639–49.

    Article  CAS  PubMed  Google Scholar 

  11. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massagué J. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell. 1994;78:59–66.

    Article  CAS  PubMed  Google Scholar 

  12. Yachida S, Sakamoto M, Imaida K, et al. p27Kip1 is overexpressed in very early stages of hepatocarcinogenesis. Cancer Sci. 2008;99:2152–9.

    Article  CAS  PubMed  Google Scholar 

  13. Carrano AC, Eytan E, Hershko A, Pagano M. Skp2 is required for ubiquitin-mediated degradation of Cdk inhibitor p27. Nat Cell Biol. 1999;1:193–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sutterlüty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Müller U, Krek W. p45Skp2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol. 1999;1:207–14.

    Article  PubMed  Google Scholar 

  15. Tomoda K, Kubota Y, Kato J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature. 1999;398:160–5.

    Article  CAS  PubMed  Google Scholar 

  16. Tomoda K, Kubota Y, Arata Y, et al. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem. 2002;277:2302–10.

    Article  CAS  PubMed  Google Scholar 

  17. Wei N, Deng XW. The COP9 signalosome. Annu Rev Cell Dev Biol. 2003;19:261–86.

    Article  CAS  PubMed  Google Scholar 

  18. Chamovitz DA, Segal D. JAB1/CSN5 and the COP9 signalosome. A complex situation. EMBO Rep. 2001;2:96–101.

    Article  CAS  PubMed  Google Scholar 

  19. Shintani S, Li C, Mihara M, Hino S, Nakashirio K, Hamakawa H. Skp2 and Jab1 expression are associated with inverse expression of p27KIP1 and poor prognosis in oral squamous cell carcinomas. Oncology. 2003;65:355–62.

    Article  CAS  PubMed  Google Scholar 

  20. Kouvaraki MA, Rassidakis GZ, Tian L, Kumar R, Kittas C, Claret FX. Jun activation domain-binding protein 1 expression in breast cancer inversely correlates with the cell cycle inhibitor p27Kip1. Cancer Res. 2003;63:2977–81.

    CAS  PubMed  Google Scholar 

  21. Wang F, Wang Y, Yu X, et al. Significance of Jab1 expression in human esophageal squamous cell carcinoma. J Clin Gastroenterol. 2009;43:520–6.

    Article  CAS  PubMed  Google Scholar 

  22. Goto A, Niki T, Moriyama S, et al. Immunohistochemical study of Skp2 and Jab1, two key molecules in the degradation of p27, in lung adenocarcinoma. Pathol Int. 2004;54:675–81.

    Article  CAS  PubMed  Google Scholar 

  23. Dong Y, Sui L, Watanabe Y, Yamaguchi F, Hatano N, Tokuda M. Prognostic significance of Jab1 expression in laryngeal squamous cell carcinomas. Clin Cancer Res. 2005;11:259–66.

    Article  CAS  PubMed  Google Scholar 

  24. Osoegawa A, Yoshino I, Kometani T, Yamaguchi M, Kameyama T, Yohena T, Maehara Y. Overexpression of Jun activation domain-binding protein 1 in nonsmall cell lung cancer and its significance in p27 expression and clinical features. Cancer. 2006;107:154–61.

    Article  CAS  PubMed  Google Scholar 

  25. Kouvaraki MA, Korapati AL, Rassidakis GZ, et al. Potential role of Jun activation domain-binding protein 1 as a negative regulator of p27kip1 in pancreatic adenocarcinoma. Cancer Res. 2006;66:8581–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hashimoto N, Yachida S, Okano K, et al. Immunohistochemically detected expression of p27Kip1 and Skp2 predicts survival in patients with intrahepatic cholangiocarcinomas. Ann Surg Oncol. 2009;16:395–403.

    Article  PubMed  Google Scholar 

  27. Patil MA, Gütgemann I, Zhang J, et al. Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma. Carcinogenesis. 2005;26:2050–7.

    Article  CAS  PubMed  Google Scholar 

  28. Liver Cancer Study Group of Japan. General rules for the clinical and pathological study of primary liver cancer. Tokyo: Kanehara, 2003.

  29. Ito Y, Matsuura N, Sakon M, et al. Expression and prognostic roles of the G1-S modulators in hepatocellular carcinoma: p27 independently predicts the recurrence. Hepatology. 1999;30:90–9.

    Article  CAS  PubMed  Google Scholar 

  30. Tannapfel A, Grund D, Katalinic A, et al. Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer. 2000;89:350–5.

    Article  CAS  PubMed  Google Scholar 

  31. Fiorentino M, Altimari A, D’Errico A, Cukor B, Barozzi C, Loda M, Grigioni WF. Acquired expression of p27 is a favorable prognostic indicator in patients with hepatocellular carcinoma. Clin Cancer Res. 2000;6:3966–72.

    CAS  PubMed  Google Scholar 

  32. Armengol C, Boix L, Bachs O, et al. p27Kip1 is an independent predictor of recurrence after surgical resection in patients with small hepatocellular carcinoma. J Hepatol. 2003;38:591–7.

    Article  CAS  PubMed  Google Scholar 

  33. Chuma M, Sakamoto M, Yamazaki K, Ohta T, Ohki M, Asaka M, Hirohashi S. Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology. 2003;37:198–207.

    Article  CAS  PubMed  Google Scholar 

  34. Viglietto G, Motti ML, Bruni P, et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med. 2002;8:1136–44.

    Article  CAS  PubMed  Google Scholar 

  35. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nat Med. 2002;8:1145–52.

    Article  CAS  PubMed  Google Scholar 

  36. Liang J, Zubovitz J, Petrocelli T, et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med. 2002;8:1153–60.

    Article  CAS  PubMed  Google Scholar 

  37. Takami T, Terai S, Yokoyama Y, et al. Human homologue of maid is a useful marker protein in hepatocarcinogenesis. Gastroenterology. 2005;128:1369–80.

    Article  CAS  PubMed  Google Scholar 

  38. Berg JP, Zhou Q, Breuhahn K, et al. Inverse expression of Jun activation domain binding protein 1 and cell cycle inhibitor p27Kip1: influence on proliferation in hepatocellular carcinoma. Hum Pathol. 2007;38:1621–7.

    Article  CAS  PubMed  Google Scholar 

  39. Hsu MC, Huang CC, Chang HC, Hu TH, Hung WC. Overexpression of Jab1 in hepatocellular carcinoma and its inhibition by peroxisome proliferator-activated receptor γ ligands in vitro and in vivo. Clin Cancer Res. 2008;14:4045–52.

    Article  CAS  PubMed  Google Scholar 

  40. Bianchi E, Denti S, Granata A, et al. Integrin LFA-1 Interacts with the transcriptional co-activator JAB1 to modulate AP-1 activity. Nature. 2000;404:617–21.

    Article  CAS  PubMed  Google Scholar 

  41. Kleemann R, Hausser A, Geiger G, et al. Intracelluar action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature. 2000;408:211–6.

    Article  CAS  PubMed  Google Scholar 

  42. Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshales RJ. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science. 2002;298:608–11.

    Article  CAS  PubMed  Google Scholar 

  43. Bech-Otschir D, Kraft R, Huang X, Henklein P, Kapelari B, Pollmann C, Dubiel W. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J. 2001;20:1630–9.

    Article  CAS  PubMed  Google Scholar 

  44. Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M, Wagner EF. Liver tumor development: c-Jun antagonizes the proapoptotic activity of p53. Cell. 2003;112:181–92.

    Article  CAS  PubMed  Google Scholar 

  45. Wan M, Cao X, Wu Y, et al. Jab1 Antagonizes TGF-beta signaling by inducing Smad4 degradation. EMBO Rep. 2002;3:171–6.

    Article  CAS  PubMed  Google Scholar 

  46. Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, Ghoshai K. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010 (in press).

  47. Tanaka Y, Kanai F, Ichimura T, et al. The Hepatitis B Virus X `rotein Enhances AP-1 Activation through Interaction with Jab1. Oncogene. 2006; 25:633–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research (15790717, 17790919) from the Ministry of Education, Science and Culture of Japan. We thank Drs. Michiie Sakamoto, Norimasa Koide, and Rie Shibata, Keio University, and Dr. Kousuke Saoo, Kagawa University, for access to archival material. Furthermore, we thank Yukie Yoshino, Mizuho Kuroda, and Aya Hashimoto for expert technical assistance.

Conflicts of Interest

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Yachida MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yachida, S., Imaida, K., Yokohira, M. et al. Jun Activation Domain Binding Protein 1 is Overexpressed from the Very Early Stages of Hepatocarcinogenesis. Ann Surg Oncol 17, 3386–3393 (2010). https://doi.org/10.1245/s10434-010-1197-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-010-1197-7

Keywords

Navigation