Skip to main content

Advertisement

Log in

A Randomized Phase 2 Trial of Bevacizumab with or without Daily Low-Dose Interferon Alfa-2b in Metastatic Malignant Melanoma

  • Melanoma
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Vascular endothelial growth factor (VEGF) is a proangiogenic molecule produced by melanoma cells. We hypothesized that administration of bevacizumab (Bev), a monoclonal antibody that neutralizes VEGF, with low-dose interferon alfa-2b (IFN-α2b), an inhibitor of basic fibroblast growth factor (FGF), would lead to the regression of metastatic melanoma.

Methods

Patients with metastatic melanoma were randomized to receive Bev (15 mg/kg intravenously every 2 weeks) with or without low-dose IFN-α2b (1 MU/m2 subcutaneously daily). Patients exhibiting a clinical response or stable disease after 12 weeks were treated until disease progression.

Results

Thirty-two patients (16 per arm) were accrued (18 male, 14 female; mean age 57.5 years). Both regimens were well tolerated. Six patients developed easily managed exacerbations of preexisting hypertension. Two patients developed grade 3 proteinuria that resolved after a treatment break. IFN-α2b therapy was associated with grade 1 to 2 constitutional symptoms. Arterial thromboembolic complications were observed in three patients (two mild myocardial infarctions, one transient ischemic attack), all of whom had risk factors. One patient (Bev plus IFN-α2b arm) had locally recurrent scalp disease that partially responded to therapy. Eight patients (five Bev, three Bev plus IFN-α2b) had prolonged disease stabilization (24 to 146 weeks). Plasma levels of VEGF and FGF did not correlate with any clinical parameter. The patient with the longest period of stable disease had the highest baseline VEGF and FGF.

Conclusions

Bev was well tolerated at this dose and prolonged disease stabilization was achieved in one-quarter of metastatic melanoma patients. Low-dose IFN-α2b did not augment the activity of Bev.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.

Similar content being viewed by others

References

  1. Ferrara N, Alitalo K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999;15:1359–64

    Article  CAS  Google Scholar 

  2. Parangi S, O’Reilly M, Christofori G, et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A 1996;93:2002–7

    Article  PubMed  CAS  Google Scholar 

  3. Investigator’s brochure: recombinant humanized anti-VEGF antibody (rhuMAb VEGF; bevacizumab). August 14, 2000

  4. Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995;129:895–8

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–76

    Article  PubMed  CAS  Google Scholar 

  6. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005;69(Suppl 3):4–10

    Article  PubMed  CAS  Google Scholar 

  7. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335–42

    Article  PubMed  CAS  Google Scholar 

  8. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non–small cell cancer. J Clin Oncol 2004;22:2184–91

    Article  PubMed  CAS  Google Scholar 

  9. Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 2005;23:792–9

    Article  PubMed  CAS  Google Scholar 

  10. Dinney CP, Bilenberg DR, Perrotte P, et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res 1998;58:808–14

    PubMed  CAS  Google Scholar 

  11. Sangfelt O, Erickson S, Castro J, et al. Molecular mechanisms underlying interferon-alpha–induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins. Oncogene 1999;18:2798–810

    Article  PubMed  CAS  Google Scholar 

  12. Ezekowitz RA, Mulliken JB, Folkman J. Interferon alpha-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 1992;326:1456–63

    Article  PubMed  CAS  Google Scholar 

  13. Simon R. Optimal two-stage designs for phase II clinical trials. Controlled Clin Trials 1989;10:1–10

    Article  PubMed  CAS  Google Scholar 

  14. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205–16

    Article  PubMed  CAS  Google Scholar 

  15. Kim CJ, Reintgen DS, Balch CM. The new melanoma staging system. Cancer Control 2002;9:9–15

    PubMed  Google Scholar 

  16. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003;21:60–5

    Article  PubMed  CAS  Google Scholar 

  17. Gordon MS, Cunningham D. Managing patients treated with bevacizumab combination therapy. Oncology 2005;69(Suppl 3):25–33

    Article  PubMed  CAS  Google Scholar 

  18. Crane CH, Ellis LM, Abbruzzese JL, et al. Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol 2006;24:1145–51

    Article  PubMed  CAS  Google Scholar 

  19. Kabbinavar FF, Jambleton J, Mass RD, et al. Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 2005;23:3706–12

    Article  PubMed  CAS  Google Scholar 

  20. Herbst RS, Johnson DH, Mininberg E, et al. Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1 epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non–small-cell lung cancer. J Clin Oncol 2005;23:2544–5

    Article  PubMed  CAS  Google Scholar 

  21. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti- vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003;349:427–34

    Article  PubMed  CAS  Google Scholar 

  22. Scappaticci FA, Fehrenbacher L, Cartwright T, et al. Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 2005;91:173–80

    Article  PubMed  CAS  Google Scholar 

  23. Hurwitz H, Kavvinavar F. Bevacizumab combined with standard fluoropyrimidine- based chemotherapy regimens to treat colorectal cancer. Oncology 2005;69(suppl 3):17–24

    Article  PubMed  CAS  Google Scholar 

  24. Bottasso B, Mari D, Coppola R, et al. Hypercoagulability and hyperfibrinolysis in patients with melanoma. Thromb Res 1996;81:345–52

    Article  PubMed  CAS  Google Scholar 

  25. Blackwell K, Hurwitz H, Lieberman G, et al. Circulating d-dimer levels are better predictors of overall survival and disease progression than carcinoembryonic antigen levels in patients with metastatic colorectal carcinoma. Cancer 2004;101:77–82

    Article  PubMed  CAS  Google Scholar 

  26. Marcoval J, Moreno A, Graells J, et al. Angiogenesis and malignant melanoma. Angiogenesis is related to the development of vertical (tumorigenic) growth phase. J Cutan Pathol 1997;24:212–8

    Article  PubMed  CAS  Google Scholar 

  27. Salven P, Heikkila P, Joensuu H. Enhanced expression of vascular endothelial growth factor in metastatic melanoma. Br J Cancer 1997;76:930–4

    PubMed  CAS  Google Scholar 

  28. Gorski DH, Leal AD, Goydos JS. Differential expression of vascular endothelial growth factor-A isoforms at different stages of melanoma progression. J Am Coll Surg 2003;197:408–18

    Article  PubMed  Google Scholar 

  29. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005;69(Suppl 3):4–10

    Article  PubMed  CAS  Google Scholar 

  30. Lacal PM, Failla CM, Pagani E, et al. Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor. J Invest Dermatol 2000;115:1000–7

    Article  PubMed  CAS  Google Scholar 

  31. Straume O, Akslen LA. Expression of vascular endothelial growth factor, its receptors (FLT-1, KDR) and TSP-1 relate to microvessel density and patient outcome in vertical growth phase melanomas. Am J Pathol 2001;159:223–35

    PubMed  CAS  Google Scholar 

  32. Ugurel S, Rappl G, Tilgen W, et al. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol 2001;19:577–83

    PubMed  CAS  Google Scholar 

  33. Oku T, Tjuvajev JG, Miyagawa T, et al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma xenografts. Cancer Res 1998;58:4185–92

    PubMed  CAS  Google Scholar 

  34. Rofstad EK, Halsor EF. Vascular endothelial growth factor, interleukin 8, platelet- derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res 2000;20:4932–8

    Google Scholar 

  35. Li Y, Wang MN, Li H, et al. Active immunization against the vascular endothelial growth factor flk 1 inhibits tumor angiogenesis and metastasis. J Exp Med 2002;195:1575–84. Erratum in: J Exp Med 2002; 196:557

    Article  PubMed  CAS  Google Scholar 

  36. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 2002;8:1369–75

    Article  PubMed  CAS  Google Scholar 

  37. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002;62:4645–55

    PubMed  CAS  Google Scholar 

  38. Tao J, Tu YT, Huag CZ, et al. Inhibiting the growth of malignant melanoma by blocking the expression of vascular endothelial growth factor using an RNA interference approach. Br J Dermatol 2005;153:715–24

    Article  PubMed  CAS  Google Scholar 

  39. Sun J, Blaskovich MA, Jain RK, et al. Blocking angiogenesis and tumorigenesis with GFA-116, a synthetic molecule that inhibits binding of vascular endothelial growth factor to its receptor. Cancer Res 2004;64:3586–92

    Article  PubMed  CAS  Google Scholar 

  40. Traxler P, Allegrini PR, Brandt R, et al. AEE788: a dual family epidermal growth factor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 2004;64:4931–41

    Article  PubMed  CAS  Google Scholar 

  41. Giantonio BJ, Catalano PJ, O’Dwyer PJ, Meropol NJ, Benson AB. Impact of bevacizumab dose reduction on clinical outcomes for patients treated on the Eastern Cooperative Oncology Group’s Study E3200. J Clin Oncol 2006; 24(18 Suppl):3538

    Google Scholar 

  42. Eggermont AM, Kirkwood JM. Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 2004;40:1825–36

    Article  PubMed  CAS  Google Scholar 

  43. Chapman PB, Einhorn LH, Meyers ML, et al. Phase III randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol 1999;17:2745–51

    PubMed  CAS  Google Scholar 

  44. Jansen B, Wacheck V, Heere-Rees, et al. Clinical, pharmacologic, and pharmacodynamic study of genasense (G3139, Bcl-2 antisense oligonucleotide) and dacarbazine (DTIC) in patients with metastatic melanoma. J Clin Oncol 2001; 20:1426

    Google Scholar 

Download references

Acknowledgments

Supported by National Institutes of Health grants CA95426, P30 CA16058-28, P01 CA95426, K24 CA93670 (W.E.C.), and U01 CA-076576-06. K.A.V. is an NRSA T32 fellow (T32 CA09338-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Carson III MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varker, K.A., Biber, J.E., Kefauver, C. et al. A Randomized Phase 2 Trial of Bevacizumab with or without Daily Low-Dose Interferon Alfa-2b in Metastatic Malignant Melanoma. Ann Surg Oncol 14, 2367–2376 (2007). https://doi.org/10.1245/s10434-007-9389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-007-9389-5

Keywords

Navigation