Skip to main content

Advertisement

Log in

Bioactive/Natural Polymeric Scaffolds Loaded with Ciprofloxacin for Treatment of Osteomyelitis

  • Research Article
  • Theme: Recent Trends in the Development of Chitosan-Based Drug Delivery Systems
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Local delivery of antibiotic into injured bone is a demand. In this work, different scaffolds of chitosan (C) with or without bioactive glass (G) were prepared using the freeze-drying technique in 2:1, 1:1, and 1:2 weight ratios. Chitosan scaffolds and selected formulas of chitosan to bioglass were loaded with ciprofloxacin in 5%, 10%, and 20% w/w. Scaffold morphology showed an interconnected porous structure, where the glass particles were homogeneously dispersed in the chitosan matrix. The kinetic study confirmed that the scaffold containing 1:2 weight ratio of chitosan to glass (CG12) showed optimal bioactivity with good compromise between Ca and P uptake capacities and Si release rate. Chitosan/bioactive glass scaffolds showed larger t 50 values indicating less burst drug release followed by a sustained drug release profile compared to that of chitosan scaffolds. The cell growth, migration, adhesion, and invasion were enhanced onto CG12 scaffold surfaces. Samples of CG12 scaffolds with or without 5% drug induced vascular endothelial growth factor (VEGF), while those containing 10% drug diminished VEGF level. Only CG12 induced the cell differentiation (alkaline phosphatase activity). In conclusion, CG12 containing 5% drug can be considered a biocompatible carrier which would help in the localized osteomyelitis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Borden M, Attawia M, Khan Y, El-Amin SF, Laurencin CT. Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Joint Surg (Br). 2004;86(8):1200–8. doi:10.1302/0301-620X.86B8.14267.

    Article  CAS  Google Scholar 

  2. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  3. Martins AM, Santos MI, Azevedo HS, Malafaya PB, Reis RL. Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications. Acta Biomater. 2008;4(6):1637–45. doi:10.1016/j.actbio.2008.06.004.

    Article  CAS  PubMed  Google Scholar 

  4. Moshfeghian A. Emulsified chitosan-PLGA scaffolds for tissue engineering [MSc Thesis]. Oklahoma State: Oklahoma State University, Stillwater, OK; 2003

  5. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I: traditional factors. Tissue Eng. 2001;7(6):679–89. doi:10.1089/107632701753337645.

    Article  CAS  PubMed  Google Scholar 

  6. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1(4):245–60. doi:10.1002/term.24.

    Article  CAS  PubMed  Google Scholar 

  7. Muzzarelli RAA. Chitin. Oxford: Pergamon Press; 1977.

    Google Scholar 

  8. Hirano S. Chitin biotechnology application. In: El-Gowely MR, editor. Biotechnology annual review. Amsterdam: Elsevier; 1996. p. 237–58.

    Chapter  Google Scholar 

  9. Muzzarelli RAA, Mattioli-Belmonte M, Pugnaloni A, Biagini G. Biochemistry, histology and clinical uses of chitins and chitosans in wound healing. EXS. 1999;87:251–64.

    CAS  PubMed  Google Scholar 

  10. Muzzarelli R, Baldassarre V, Conti F, et al. Biological activity of chitosan: ultrastructural study. Biomaterials. 1988;9(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  11. Thein-Han WW, Stevens WF. Transdermal delivery controlled by a chitosan membrane. Drug Dev Ind Pharm. 2004;30(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  12. Muzzarelli RAAJC, Gooday GWe. Chitin in nature and technology. New York: Plenum Press; 1986.

  13. Chandy TSP. Biomat, art cells. Art Org. 1990;18:1–24.

    CAS  Google Scholar 

  14. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339–49. doi:10.1016/S0142-9612(03)00026-7.

    Article  CAS  PubMed  Google Scholar 

  15. Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge NC, Selvamurugan N. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol. 2012;23:294–9. doi:10.1016/j.ijbiomac.2011.11.013.

    Article  Google Scholar 

  16. Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol. 2011;49(2):188–93. doi:10.1016/j.ijbiomac.2011.04.010.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Zhang G, Yang S, et al. Effects of in situ and physical mixing on mechanical and bioactive behaviors of nano hydroxyapatite-chitosan scaffolds. J Biomater Sci. 2011;22(15):2097–106. doi:10.1163/092050610X533691.

    Article  CAS  Google Scholar 

  18. Mohamed KR, Mostafa AA. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Mater Sci Eng C. 2008;28(7):1087–99. doi:10.1016/j.msec.2007.04.040.

    Article  CAS  Google Scholar 

  19. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005 Oct;26(30):5983–90. doi: 0.1016/j.biomaterials.2005.03.016.

  20. Thein-Han WW, Kitiyanant Y, Misra RDK. Chitosan as a scaffold matrix for tissue engineering. Mater Sci Technol. 2008;24:1062–75. doi:10.1179/174328408X341753.

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001;55(3):304–12. doi:10.1002/1097-4636(20010605)55:3<304::AID-JBM1018>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  22. Bui XV, Oudadesse H, Le Gal Y, Mostafa A, Pellen P, Cathelineau G. Chemical reactivity of biocomposite glass-zoledronate. J Aust Ceram Soc. 2010;46(2):24–8.

    CAS  Google Scholar 

  23. Bui XV, Oudadesse H, Le Gal Y, Merdrignace-Conanec O, Cathelineau G. Bioactivity behaviour of biodegradable material comprising bioactive glass. Korean J Chem Eng. 2011:DOI: 10.1007/s11814-011-0151-0.

  24. Mabrouk M, Mostafa A, Oudadesse H, Mahmoud A, El-Gohary M. Bioactivity and drug delivering ability of a chitosan/46S6 melted bioactive glass biocomposite scaffold. Interceram. 2013;62:444–52.

    CAS  Google Scholar 

  25. Mourino V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7(43):209–27. doi:10.1098/rsif.2009.0379.

    Article  CAS  PubMed  Google Scholar 

  26. Nayak AK, Sen KK. Hydroxyapatite-ciprofloxacin minipellets for bone-implant delivery: Preparation, characterization, in-vitro drug adsorption and dissolution studies. Int J Drug Dev Res. 2009;1:47–59.

    CAS  Google Scholar 

  27. Mabrouk M, Mostafa A, Oudadesse H, Wers E, Lucas-Girot A, El-Gohary MI. Comparative study of nanobioactive glass quaternary system 46S6. Bioceram Dev Appl. 2014;4(1):1000072. doi:10.4172/2090-5025.1000072.

    Google Scholar 

  28. Viana M, Jouannin P, Pontier C, Chulia D. About pycnometric density measurements. Talanta. 2002;57(3):583–93. doi:10.1016/S0039-9140(02)00058-9.

    Article  CAS  PubMed  Google Scholar 

  29. Mostafa AA, Oudadesse H, El‐Sayed MM. A quantitative approach for studying the bioactivity of nanohydroxyapatite/gold composites. J Biomed Mater Res A. 2015;103(11):3483–92. doi:10.1002/jbm.a.35494.

    Article  CAS  PubMed  Google Scholar 

  30. Mostafa AA, Oudadesse H, Mohamed MB, Foad ES, Le Gal Y, Cathelineau G. Convenient approach of nanohydroxyapatite polymeric matrix composites. Chem Eng J. 2009;153:187–92. doi:10.1016/j.cej.2009.05.039.

    Article  CAS  Google Scholar 

  31. Ho Y-S, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451–65. doi:10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

  32. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci. 1983;72(10):1189–91. doi:10.1002/jps.2600721021.

    Article  CAS  PubMed  Google Scholar 

  33. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1.

    CAS  PubMed  Google Scholar 

  34. Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv. 1972;47(10):594–607.

    CAS  PubMed  Google Scholar 

  35. Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. PNAS. 2002;99(5):3024–9. doi:10.1073/pnas.052678899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119(2):203–10. doi:10.1016/0022-1759(89)90397-9.

    Article  CAS  PubMed  Google Scholar 

  37. Gohel A, McCarthy M-B, Gronowicz G. Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology. 1999;140(11):5339–47.

    CAS  Google Scholar 

  38. Yang L, Tao T, Wang X, et al. Effects of dexamethasone on proliferation, differentiation and apoptosis of adult human osteoblasts in vitro. Chin Med J. 2003;116(9):1357–60.

    CAS  PubMed  Google Scholar 

  39. Franceschi RT, Young J. Regulation of alkaline phosphatase by 1,25-dihydroxyvitamin D3 and ascorbic acid in bone-derived cells. J Bone Miner Res. 1990;5(11):1157–67.

    Article  CAS  PubMed  Google Scholar 

  40. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 2009;7(6):683–92. doi:10.1002/jbmr.5650070613.

    Article  Google Scholar 

  41. Schiller P, D’ippolito G, Balkan W, Roos B, Howard G. Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone. 2001;28(4):362–9.

    Article  CAS  PubMed  Google Scholar 

  42. Markham R, Young L, Fraser I. An amplified ELISA for human tumour necrosis factor alpha. Eur Cytokine Netw. 1994;6(1):49–54.

    Google Scholar 

  43. Mahmoud AA, Salama AH. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: preparation, evaluation and in-vivo wound healing assessment. Eur J Pharm Sci. 2016;83:155–65. doi:10.1016/j.ejps.2015.12.026.

    Article  CAS  PubMed  Google Scholar 

  44. Sun X, Kang Y, Bao J, Zhang Y, Yang Y, Zhou X. Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials. 2013;34(21):4971–81. doi:10.1016/j.biomaterials.2013.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burdick JA, Mauck RL. Biomaterials for tissue engineering applications: a review of the past and future trends. Springer Science & Business Media; 2010

  46. Muzzarelli R. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci (CMLS). 1997;53(2):131–40. doi:10.1007/PL00000584.

    Article  CAS  Google Scholar 

  47. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18(7):567–75. doi:10.1016/S0142-9612(96)00167-6.

    Article  CAS  PubMed  Google Scholar 

  48. Chang H-I, Wang Y. Cell responses to surface and architecture of tissue engineering scaffolds. InTechOpen. 2011.

  49. Bet M, Goissis G, Vargas S, Selistre-de-Araujo H. Cell adhesion and cytotoxicity studies over polyanionic collagen surfaces with variable negative charge and wettability. Biomaterials. 2003;24(1):131–7. doi:10.1016/S0142-9612(02)00270-3.

    Article  CAS  PubMed  Google Scholar 

  50. Lee SJ, San Choi J, Park KS, Khang G, Lee YM, Lee HB. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials. 2004;25(19):4699–707. doi:10.1016/j.biomaterials.2003.11.034.

    Article  CAS  PubMed  Google Scholar 

  51. Keselowsky BG, Collard DM, García AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci U S A. 2005;102(17):5953–7. doi:10.1073/pnas.0407356102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Supplement 3):S131–9. doi:10.2215/CJN.04151206CJASN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by Science and Technology Development Fund (STDF) Egypt, project number 5024.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amany A. Mostafa or Amira M. Gamal-Eldeen.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Guest Editors: Claudio Salomon, Francisco Goycoolea, and Bruno Moerschbacher

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, A.A., El-Sayed, M.M.H., Mahmoud, A.A. et al. Bioactive/Natural Polymeric Scaffolds Loaded with Ciprofloxacin for Treatment of Osteomyelitis. AAPS PharmSciTech 18, 1056–1069 (2017). https://doi.org/10.1208/s12249-016-0605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0605-0

KEY WORDS

Navigation