Skip to main content

Advertisement

Log in

Comparative Study Between Different Ready-Made Orally Disintegrating Platforms for the Formulation of Sumatriptan Succinate Sublingual Tablets

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Sumatriptan succinate (SS) is a selective serotonin receptor agonist used for the treatment of migraine attacks, suffering from extensive first-pass metabolism and low oral bioavailability (∼14%). The aim of this work is to compare the performance of different ready-made co-processed platforms (Pharmaburst®, Prosolv ODT®, Starlac®, Pearlitol Flash®, or Ludiflash®) in the formulation of SS sublingual orodispersible tablets (ODTs) using direct compression technique. The prepared SS ODT formulae were evaluated regarding hardness, friability, simulated wetting time, and in vitro disintegration and dissolution tests. Different mucoadhesive polymers—HPMC K4M, Carbopol®, chitosan, or Polyox®—were tested aiming to increase the residence time in the sublingual area. A pharmacokinetic study on healthy human volunteers was performed, using LC/MS/MS assay, to compare the optimum sublingual formula (Ph25/HPMC) with the conventional oral tablet Imitrex®. Results showed that tablets prepared using Pharmaburst® had significantly (p < 0.05) the lowest simulated wetting and in vitro disintegration times of 17.17 and 23.50 s, respectively, with Q 5 min of 83.62%. HPMC showed a significant (p < 0.05) increase in the residence time from 48.44 to 183.76 s. The relative bioavailability was found to be equal to 132.34% relative to the oral tablet Imitrex®. In conclusion, Pharmaburst® was chosen as the optimum ready-made co-processed platform that can be successfully used in the preparation of SS sublingual tablets for the rapid relief of migraine attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Khattawi A, Mohammed AR. Compressed orally disintegrating tablets: excipients evolution and formulation strategies. Expert Opinion Drug Delivery. 2013;10(5):651–63. doi:10.1517/17425247.2013.769955.

    Article  CAS  Google Scholar 

  2. Velmurugan S, Sundar V. Oral disintegrating tablets: an overview. Int J Chem Pharm Sci. 2010;1(2):1–12.

    CAS  Google Scholar 

  3. Chang RK, Guo X, Burnside BA, Couch RA. Fast-dissolving tablets. Pharm Technol. 2000;24(6):52–8.

    CAS  Google Scholar 

  4. Okuda Y, Irisawa Y, Okimoto K, Osawa T, Yamashita S. A new formulation for orally disintegrating tablets using a suspension spray-coating method. Int J Pharm. 2009;382(1–2):80–7. doi:10.1016/j.ijpharm.2009.08.010.

    Article  CAS  PubMed  Google Scholar 

  5. Jeong SH, Fu Y, Park K. Frosta: a new technology for making fast-melting tablets. Expert Opinion Drug Delivery. 2005;2(6):1107–16. doi:10.1517/17425247.2.6.1107.

    Article  CAS  Google Scholar 

  6. Elbakry AM, Elosaily GH, Yassin GE, Zaky AA. Design and assessment of chlorpheniramine maleate sublingual tablets using novel ternary phase superdisintegrants. J Am Sci. 2014;10(5):125–34.

    Google Scholar 

  7. Mehta M, Bhagwat DP, Gupta GD. Fast dissolving tablets of sertraline hydrochloride. Int J Chem Tech Res. 2009;1(4):925–30.

    CAS  Google Scholar 

  8. Sharma S, Bhardwaj P, Gupta GD. Formulation, evaluation & optimization of mouth dissolving tablets of losartan potassium: effect of co-processed superdisintegrants. Int J Pharmaceutical Biological Archives. 2010;1(1):76–83.

    Google Scholar 

  9. Gonnissen Y, Remon JP, Vervaet C. Development of directly compressible powders via co-spray drying. Eur J Pharmaceutics Biopharmaceutics: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2007;67(1):220–6. doi:10.1016/j.ejpb.2006.12.021.

    Article  CAS  Google Scholar 

  10. Rojasa J, Kumarb V. Effect of polymorphic form on the functional properties of cellulose: a comparative study. Carbohydr Polym. 2012;87(3):2223–30. doi:10.1016/j.carbpol.2011.10.052.

    Article  Google Scholar 

  11. Überall MA, Müller-Schwefe GHH. Sublingual fentanyl orally disintegrating tablet in daily practice: efficacy, safety and tolerability in patients with breakthrough cancer pain. Curr Med Res Opin. 2011;27(7):1385–94. doi:10.1185/03007995.2011.583231.

    Article  PubMed  Google Scholar 

  12. Nalamachu S, Hassman D, Wallace MS, Dumble S, Derrick R, Howell J. Long-term effectiveness and tolerability of sublingual fentanyl orally disintegrating tablet for the treatment of breakthrough cancer pain. Curr Med Res Opin. 2011;27(3):519–30. doi:10.1185/03007995.2010.545380.

    Article  CAS  PubMed  Google Scholar 

  13. Rauck RL, Tark M, Reyes E, Hayes TG, Bartkowiak AJ, Hassman D, et al. Efficacy and long-term tolerability of sublingual fentanyl orally disintegrating tablet in the treatment of breakthrough cancer pain. Curr Med Res Opin. 2009;25(12):2877–85. doi:10.1185/03007990903368310.

    Article  CAS  PubMed  Google Scholar 

  14. Douzenis A, Michopoulos I, Economopoulos T, Lykouras L, Soldatos CR. Sublingual use of olanzapine in combination with alprazolam to treat agitation in a terminally ill patient receiving parenteral nutrition. Eur J Cancer Care. 2007;16(3):289–90. doi:10.1111/j.1365-2354.2006.00735.x.

    Article  CAS  Google Scholar 

  15. Bascom PB, Bordley JL, Lawton AJ. High-dose neuroleptics and neuroleptic rotation for agitated delirium near the end of life. Am J Hospice Palliative Care. 2014;31(8):808–11. doi:10.1177/1049909113507124.

    Article  Google Scholar 

  16. Davies A. Cancer-related breakthrough pain. 2nd ed. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  17. Moffat AC, Osselton MD, Widdop B. Monographs: sumatriptan. In: Moffat AC, Osselton MD, Widdop B, editors. Clarke’s analysis of drugs and poisons. 4th ed. London: Pharmaceutical Press; 2011.

    Google Scholar 

  18. Schanker LS. Physiological transport of drugs. Adv Drug Res. 1964;1:71–106.

    CAS  PubMed  Google Scholar 

  19. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72. doi:10.1093/nar/gkj067.

    Article  CAS  PubMed  Google Scholar 

  20. Das NG, Das SK. Development of mucoadhesive dosage forms of buprenorphine for sublingual drug delivery. Drug Delivery. 2004;11(2):89–95. doi:10.1080/10717540490280688.

    Article  CAS  PubMed  Google Scholar 

  21. Cilurzo F, Selmin F, Minghetti P, Gennari CGM, Demartin F, Montanari L. Characterization and physical stability of fast-dissolving microparticles containing nifedipine. Eur J Pharm Biopharm. 2008;68(3):579–88. doi:10.1016/j.ejpb.2007.06.012.

    Article  CAS  PubMed  Google Scholar 

  22. Koland M, Sandeep VP, Charyulu NR. Fast dissolving sublingual films of ondansetron hydrochloride: effect of additives on in vitro drug release and mucosal permeation. J Young Pharmacists: JYP. 2010;2(3):216–22. doi:10.4103/0975-1483.66790.

    Article  CAS  Google Scholar 

  23. Cilurzo F, Selmin F, Minghetti P, Rimoldi I, Demartin F, Montanari L. Fast-dissolving mucoadhesive microparticulate delivery system containing piroxicam. Eur J Pharm Sci. 2005;24(4):355–61. doi:10.1016/j.ejps.2004.11.010.

    Article  CAS  PubMed  Google Scholar 

  24. Varshosaz J, Firozian F, Ghassami E. Formulation, optimization and in vitro evaluation of rapid disintegrating and mucoadhesive sublingual tablets of lorazepam. Farmacia. 2015;63(2):234–46.

    CAS  Google Scholar 

  25. Bredenberg S, Duberg M, Lennernas B, Lennernas H, Pettersson A, Westerberg M, et al. In vitro and in vivo evaluation of a new sublingual tablet system for rapid oromucosal absorption using fentanyl citrate as the active substance. Eur J Pharmaceutical Sci: Off J Eur Federation Pharmaceutical Sci. 2003;20(3):327–34. doi:10.1016/j.ejps.2003.07.002.

    Article  CAS  Google Scholar 

  26. Yehia SA, Elshafeey AH, Sayed I, Shehata AH. Optimization of budesonide compression-coated tablets for colonic delivery. AAPS PharmSciTech. 2009;10(1):147–57. doi:10.1208/s12249-009-9188-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. The British Pharmacopoeia Commission. The British Pharmacopoeia: the stationery office on behalf of the medicines and healthcare products regulatory agency (MHRA); 2009.

  28. Banker GS, Anderson NR. In: Lachman L, Lieberman HA, Kanig JL, editors. The theory and practice of industrial pharmacy. 1986. pp. 297.

  29. Sunada H, Bi Y. Preparation, evaluation and optimization of rapidly disintegrating tablets. Powder Technol. 2002;122(2–3):188–98. doi:10.1016/S0032-5910(01)00415-6.

    Article  CAS  Google Scholar 

  30. Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)—a novel solid oral dosage form for paediatric use. Eur J Pharmaceutics Biopharmaceutics: Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2011;78(3):462–9. doi:10.1016/j.ejpb.2011.02.005.

    Article  CAS  Google Scholar 

  31. Europe Co. European Pharmacopeia: supplements. Fourth ed. Council of Europe; 2002.

  32. Prajapati ST, Patel PB, Patel CN. Formulation and evaluation of sublingual tablets containing sumatriptan succinate. Int J Pharmaceutical Investigation. 2012;2(3):162–8. doi:10.4103/2230-973X.104400.

    Article  CAS  Google Scholar 

  33. Declaration of Helsinki. Ethical principles for medical research involving human subjects. J Indian Med Assoc. 2009;107(6):403–5.

    Google Scholar 

  34. U.S. Department of Health and Human Services. Guidance for industry, food-effect bioavailability and fed bioequivalence studies. 2002.

  35. Jambhekar S, Breen PJ. Basic pharmacokinetics. London: Pharmaceutical Press; 2009.

    Google Scholar 

  36. U.S. Department of Health and Human Services. Guidance for industry, bioequivalence guidance. 2006.

  37. García-Arieta A. Design of bioequivalence studies. WHO workshop on assessment of bioequivalence data; 2010 31 August–3 September; Addis Ababa, Ethiopia.

  38. U.S. Department of Health and Human Services. Guidance for industry, bioanalytical method validation. In: Food and Drug Administration, editor. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM368107.pdf 2013.

  39. Tayel SA, El Nabarawi MA, Amin MM, Abou Ghaly MH. Sumatriptan succinate sublingual fast dissolving thin films: formulation and in vitro/in vivo evaluation. Pharm Dev Technol. 2016;21(3):328–37. doi:10.3109/10837450.2014.1003655.

    Article  CAS  PubMed  Google Scholar 

  40. Armstrong NA. Monographs: mannitol. In: Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients. London: Pharmaceutical Press; 2009. p. 424–8.

  41. Edge S, Kibbe AH, Shur J. Monographs: lactose. In: Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients. London: Pharmaceutical Press; 2009. p. 359–61.

  42. Mullarney MP, Hancock BC, Carlson GT, Ladipo DD, Langdon BA. The powder flow and compact mechanical properties of sucrose and three high-intensity sweeteners used in chewable tablets. Int J Pharm. 2003;257(1–2):227–36. doi:10.1016/S0378-5173(03)00144-3.

    Article  CAS  PubMed  Google Scholar 

  43. Joiris E, Di Martino P, Berneron C, Guyot-Hermann AM, Guyot JC. Compression behavior of orthorhombic paracetamol. Pharm Res. 1998;15(7):1122–30. doi:10.1023/A:1011954800246.

    Article  CAS  PubMed  Google Scholar 

  44. Rasenack N, Muller BW. Crystal habit and tableting behavior. Int J Pharm. 2002;244(1–2):45–57. doi:10.1016/S0378-5173(02)00296-X.

    Article  CAS  PubMed  Google Scholar 

  45. Caramella C, Ferrari F, Bonferoni MC, Ronchi M. Disintegrants in solid dosage forms. Drug Dev Ind Pharm. 1990;16(17):2561–77. doi:10.3109/03639049009058547.

    Article  CAS  Google Scholar 

  46. Selkirk AB, Ganderton D. An investigation of the pore structure of tablets of sucrose and lactose by mercury porosimetry. J Pharm Pharmacol. 1970: Suppl:79S+. doi:10.1111/j.2042-7158.1970.tb08584.x.

  47. Florence AT, Attwood D. The solubility of drugs. In: Florence AT, Attwood D, editors. Physicochemical principles of pharmacy. 4th ed. London: Pharmaceutical Press; 2006. p. 139–76.

    Google Scholar 

  48. Colombo P, Conte U, Caramella C, Geddo M, La Manna A. Disintegrating force as a new formulation parameter. J Pharm Sci. 1984;73(5):701–5. doi:10.1002/jps.2600730531.

    Article  CAS  PubMed  Google Scholar 

  49. Caramella C, Colombo P, Conte U, Gazzaniga A, La Manna A. The role of swelling in the disintegration process. Int J Pharm Technol and Manuf. 1984;5(2).

  50. Wan LSC, Prasad KPP. Uptake of water by excipients in tablets. Int J Pharm. 1989;50:147–53. doi:10.1016/0378-5173(89)90139-7.

    Article  CAS  Google Scholar 

  51. Jacob S, Shirwaikar AA, Joseph A, Srinivasan SS. Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets of glipizide. Ind J Pharm Sci. 2007;69(5):633–9. doi:10.4103/0250-474X.38467.

    Article  CAS  Google Scholar 

  52. Shu T, Suzuki H, Hironaka K, Ito K. Studies of rapidly disintegrating tablets in the oral cavity using co-ground mixtures of mannitol with crospovidone. Chem Pharmaceutical Bull. 2002;50(2):193–8. doi:10.1248/cpb.50.193.

    Article  CAS  Google Scholar 

  53. Shamma RN, Basha M. Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 2013;237:406–14. doi:10.1016/j.powtec.2012.12.038.

    Article  CAS  Google Scholar 

  54. Shao ZJ, Moralesi L, Diaz S, Muhammadi NA. Drug release from Kollicoat SR 30D-coated nonpareil beads: evaluation of coating level, plasticizer type, and curing condition. AAPS PharmSciTech. 2002;3(2):87–96. doi:10.1208/pt030215.

  55. Dashevsky A, Wagner K, Kolter K, Bodmeier R. Physicochemical and release properties of pellets coated with Kollicoat SR 30 D, a new aqueous polyvinyl acetate dispersion for extended release. Int J Pharm. 2005;290(1–2):15–23. doi:10.1016/j.ijpharm.2004.10.024.

    Article  CAS  PubMed  Google Scholar 

  56. Wesch R. Absolute and relative bioavailability. In: Vogel HG, Maas J, Gebauer A, editors. Drug discovery and evaluation: methods in clinical pharmacology. Berlin: Springer; 2011. p. 173–80.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Genuine Research Center, Cairo, Egypt, for their help in performing the in vivo study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. H. AbouGhaly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayel, S.A., El Nabarawi, M.A., Amin, M.M. et al. Comparative Study Between Different Ready-Made Orally Disintegrating Platforms for the Formulation of Sumatriptan Succinate Sublingual Tablets. AAPS PharmSciTech 18, 410–423 (2017). https://doi.org/10.1208/s12249-016-0517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0517-z

KEY WORDS

Navigation