Skip to main content
Log in

Exploring Microstructural Changes in Structural Analogues of Ibuprofen-Hosted In Situ Gelling System and Its Influence on Pharmaceutical Performance

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The present work explores inner structuration of in situ gelling system consisting of glyceryl monooleate (GMO) and oleic acid (OA). The system under study involves investigation of microstructural changes which are believed to govern the pharmaceutical performance of final formulation. The changes which are often termed mesophasic transformation were analysed by small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), rheology and plane polarised light (PPL) microscopy. The current work revealed transformation of blank system from W/O emulsion to reverse hexagonal structure upon addition of structural analogues of ibuprofen. Such transformations are believed to occur due to increased hydrophobic volume within system as probed by SAXS analysis. The findings of SAXS studies were well supported by DSC, rheology and PPL microscopy. The study established inverse relationship between log P value of structural analogues of ibuprofen and the degree of binding of water molecules to surfactant chains. Such relationship had pronounced effect on sol–gel transformation process. The prepared in situ gelling system showed sustained drug release which followed Higuchi model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Jensen J, Schutzbach J. Activation of mannosyltransferase II by nonbilayer phospholipids. Biochemistry. 1984;23:1115–9.

    Article  CAS  Google Scholar 

  2. Fahr A, van Hoogevest P, May S, Bergstrand N, Leigh MLS. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur J Pharm Sci. 2005;26:251–65.

    Article  CAS  PubMed  Google Scholar 

  3. Shan-Yang L, Hsiu-Li L, Mei-Jane L. Adsorption of binary liquid crystals onto cellulose membrane for thermo-responsive drug delivery. Adsorption. 2002;8:197–202.

    Article  Google Scholar 

  4. Caboi F, Nylander T, Razumas V, Talaikyte Z, Monduzzi M, Larsson K. Structural effects, mobility, and redox behavior of vitamin K1 hosted in the monoolein/water liquid crystalline phases. Langmuir. 1997;13:5476–83.

    Article  CAS  Google Scholar 

  5. Seddon J. Lyotropic phase behaviour of biological amphiphiles. Ber Bunsen Ges Phys Chem. 1996;100:380–93.

    Article  CAS  Google Scholar 

  6. Chang C, Bodmeier R. Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J Control Release. 1997;46:215–22.

    Article  CAS  Google Scholar 

  7. Lindblom G, Rilfors L. Cubic phases and isotropic structures formed by membrane lipids—possible biological relevance. Biomed Biochim Acta. 1989;988:221–56.

    Article  CAS  Google Scholar 

  8. Larsson K. Cubic lipid-water phases: structures and biomembrane aspects. J Phys Chem. 1989;93:7304–14.

    Article  CAS  Google Scholar 

  9. Chilukuri D, Shah J. Mechanism of drug release from glyceryl monooleate cubic phase gel using bupivacaine as a model drug. Pharm Res. 1997;14:532S.

    Google Scholar 

  10. Isrealachvilli J, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2. 1976;72:1525–68.

    Article  Google Scholar 

  11. Patton J, Carey M. Watching fat digestion. Science. 1979;204:145–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lutton E. Phase behavior of aqueous systems of monoglycerides. J Am Oil Chem Soc. 1965;42:1068–70.

    Article  CAS  PubMed  Google Scholar 

  13. Larsson K. Two cubic phases in monoolein/water system. Nature. 1983;304:664.

    Article  Google Scholar 

  14. Chernik G. Phase studies of surfactant-water systems. Curr Opin Colloid Interface Sci. 2000;4:381–90.

    Article  Google Scholar 

  15. Rappolt M, Gregorio GM, Almgren M, Amenitsch H, Pabst G, Laqggner P, et al. Non-equilibrium formation of the cubic Pn3m phase in a monoolein/water system. Europhys Lett. 2006;75:267–73.

    Article  CAS  Google Scholar 

  16. Qiu H, Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000;21:223–34.

    Article  CAS  PubMed  Google Scholar 

  17. Shah M, Paradkar A. Cubic liquid crystalline glyceryl monooleate matrices for oral delivery of enzyme. Int J Pharm. 2005;294:161–71.

    Article  CAS  PubMed  Google Scholar 

  18. Yaghmur A, Laggner P, Zhang S, Rappolt M. Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLoS One. 2007;2:e479.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Fong W, Hanley T, Boyd B. Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release. 2009;135:218–26.

    Article  CAS  PubMed  Google Scholar 

  20. Caboi F, Murgia S, Monduzzi M, Lazzari P. NMR investigation on Melaleuca alternifolia essential oil dispersed in the monoolein aqueous system: phase behavior and dynamics. Langmuir. 2002;18:7916–22.

    Article  CAS  Google Scholar 

  21. Drummond C, Fong C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci. 2000;4:449–56.

    Article  Google Scholar 

  22. Patil S, Mahadik K, Paradkar A. Liquid crystalline phase as a probe for crystal engineering of lactose: carrier for pulmonary drug delivery. Eur J Pharm Sci. 2015;68:43–50.

    Article  CAS  PubMed  Google Scholar 

  23. Borne J, Nylander T, Khan A. Microscopy, SAXD, and NMR studies of phase behavior of the monoolein-diolein-water system. Langmuir. 2000;16:10044–54.

    Article  CAS  Google Scholar 

  24. Amar-Yuli I, Aserin A, Garti N. Solubilization of nutraceuticals into reverse hexagonal mesophases. J Phys Chem B. 2008;112:10171–80.

    Article  CAS  PubMed  Google Scholar 

  25. Patil S, Venugopal E, Bhat S, Mahadik K, Paradkar A. Mapping ion-induced mesophasic transformation in lyotropic in situ gelling system and its correlation with pharmaceutical performance. Pharm Res. 2013;30:1906–14.

    Article  CAS  PubMed  Google Scholar 

  26. Biradar S, Dhumal R, Paradkar A. Rheological investigation of self-emulsification process. J Pharm Pharm Sci. 2009;12:17–31.

    CAS  PubMed  Google Scholar 

  27. Rosevear F. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Am Oil Chem Soc. 1954;31:628–39.

    Article  CAS  Google Scholar 

  28. Glatter O, Orthaber D, Stradner A, Scherf G, Fanun M, Garti N, et al. Sugar-ester nonionic microemulsion: structural characterization. J Colloid Interface Sci. 2001;241:215–25.

    Article  CAS  PubMed  Google Scholar 

  29. Salonen A, Muller F, Glatter O. Dispersions of internally liquid crystalline systems stabilized by charged disklike particles as pickering emulsions: basic properties and time-resolved behavior. Langmuir. 2008;24:5306–14.

    Article  CAS  PubMed  Google Scholar 

  30. Patil S, Venugopal E, Bhat S, Mahadik K, Paradkar A. Probing influence of mesophasic transformation in self-emulsifying system: effect of Ion. Mol Pharm. 2012;9:318–24.

    Article  CAS  PubMed  Google Scholar 

  31. Patil S, Venugopal E, Bhat S, Mahadik K, Paradkar A. Microstructural elucidation of self-emulsifying system: effect of chemical structure. Pharm Res. 2012;29:2180–8.

    Article  CAS  PubMed  Google Scholar 

  32. Caboi F, Gaia S, Pitzalisa A, Monduzzia M, Nylanderb T, Larsson K. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I Phase behavior. Chem Phys Lipids. 2001;109:47–62.

    Article  CAS  PubMed  Google Scholar 

  33. Lopes L, Ferreira D, Paula D, Garcia M, Thomazini J, Fantini M, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res. 2006;23:1332–42.

    Article  CAS  PubMed  Google Scholar 

  34. Borne J, Nylander T, Khan A. Phase behavior and aggregate formation for the aqueous monoolein system mixed with sodium oleate and oleic acid. Langmuir. 2001;17:7742–51.

    Article  CAS  Google Scholar 

  35. Beetge E, Plessis E, Muller D, Goosen C, Rensburg F. The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAID’S on their transdermal absorption. Int J Pharm. 2000;193:261–4.

    Article  CAS  PubMed  Google Scholar 

  36. Li Q, Tsuji H, Kato Y, Sai Y, Kubo Y, Tsuji A. Characterization of the transdermal transport of flurbiprofen and indomethacin. J Control Release. 2006;110:542–56.

    Article  CAS  PubMed  Google Scholar 

  37. Senatra D, Lendinara L, Giri M. W/O microemulsions as model systems for the study of water confined in microenvironments: low resolution 1H magnetic resonance relaxation analysis. Progr Colloid Polym Sci. 1991;84:122–8.

    Article  CAS  Google Scholar 

  38. Schulz P, Puig J, Barreiro G, Torres L. Thermal transitions in surfactant-based lyotropic liquid crystals. Thermochim Acta. 1994;231:239–56.

    Article  CAS  Google Scholar 

  39. Ulrich A, Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994;66:1441–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mezzenga R, Meyer C, Servais C, Romoscanu A, Sagalowicz L, Hayward R. Shear rheology of Lyotropic liquid crystals: a case study. Langmuir. 2005;21:3322–33.

    Article  CAS  PubMed  Google Scholar 

  41. Tadros T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Colloid Interface Sci. 2007;109:227–58.

    Google Scholar 

  42. Negrini R, Mezzenga R. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir. 2011;27:5296–303.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. Guruswamy Kumaraswamy, Scientist, Polymer Chemistry, National Chemical Laboratory, Pune for providing facility of small angle X-ray scattering and for extending his cooperation in SAXS data analysis and discussion.2

Conflict of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kakasaheb R. Mahadik or Anant R. Paradkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.S., Venugopal, E., Bhat, S. et al. Exploring Microstructural Changes in Structural Analogues of Ibuprofen-Hosted In Situ Gelling System and Its Influence on Pharmaceutical Performance. AAPS PharmSciTech 16, 1153–1159 (2015). https://doi.org/10.1208/s12249-015-0308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0308-y

KEY WORDS

Navigation