Skip to main content
Log in

Preformulation and physicochemical interaction study of furosemide with different solid lipids

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

The aim of the present work was to prepare and characterize the matrices of Furosemide (FRSM) with different solid lipids (Compritol 888 ATO, Hydrokote C, Imwitor 491, Imwitor 372P, and Witepsol H12) using Fourier transform infrared (FTIR), Raman, differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy. The solubility of FRSM in various solid lipids followed the order of; Compritol 888 ATO > Witepsol H12 > Hydrokote C > Imwitor 491 > Imwitor 372. FTIR, Raman, DSC and XRD studies indicated no chemical interactions with Compritol 888 ATO, Imwitor 491 and Imwitor 372P. Scanning electron microscopic images of lipids, melted lipids, FRSM and FRSM-lipid matrices showed different morphological characteristics. In vitro drug release study showed the sustained release of drug from all lipid-matrices that followed Higuchi and Korsmeyer–Peppas model except FRSM-Hydrokote matrix. The best fit model of FRSM-Hydrokote matrix was zero order (R2 = 0.978). Conclusively, Compritol 888 ATO was selected as lipid of choice owing to maximum solubility, least chemical interaction and better sustained release profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews GP, Abudiak OA et al (2010) Physicochemical characterization of hot melt extruded bicalutamide–polyvinylpyrrolidone solid dispersions. J Pharm Sci 99:1322–1335

    Article  CAS  PubMed  Google Scholar 

  • Babu NJ, Cherukuvada S et al (2010) Conformational and synthon polymorphism in furosemide (lasix). Cryst Growth Des 10:1979–1989

    Article  CAS  Google Scholar 

  • Barbara S (2004) Biological Applications. In: Ando David J (ed) Infrared spectroscopy: fundamentals and applications. Wiley, Chichester, pp 137–166

    Google Scholar 

  • Bolukbasi O, Yilmaz A (2012) X-ray structure analysis and vibrational spectra of furosemide. Vib Spectrosc 62:42–49

    Article  CAS  Google Scholar 

  • British Pharmacopoeia (2009) Hydrogenated cottonseed oil. Med Pharm Subst 1:1–3

    Google Scholar 

  • Bruni G, Amici L et al (2002) Drug excipient compatibility studies: search of interaction indicators. J Therm Anal Calorim 68:561–573

    Article  CAS  Google Scholar 

  • Chadha R, Bhandari S (2014) Drug-excipient compatibility screening–role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal 87:82–97

    Article  CAS  PubMed  Google Scholar 

  • Christel AS, Bergström HR et al (2013) Early pharmaceutical profiling to predict oral drug absorption: current status and unmet needs. Eur J Pharm Sci 57:173–199

    Google Scholar 

  • Claudia G, Chattah AK et al (2014) Improving furosemide polymorphs properties through supramolecular complexes of β-cyclodextrin. J Pharm Biomed Anal 95:139–145

    Article  Google Scholar 

  • Crowley P, Martini L (2001) Drug-excipient interactions. Pharm Technol Eur 13:26–34

    CAS  Google Scholar 

  • de Villiers MM, van der Watt JG et al (1995) Correlation between physico-chemical properties and cohesive behavior of furosemide crystal modifications. Drug Dev Ind Pharm 17:1975–1988

    Article  Google Scholar 

  • Doherty C, York P (1988) Frusemide crystal forms; solid state and physicochemical analyses. Int J Pharm 47:141–155

    Article  CAS  Google Scholar 

  • Freitas C, Muller RH (1999) Correlation between long term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm 47:125–132

    Article  CAS  PubMed  Google Scholar 

  • Garti N (1988) Effects of surfactants on crystallization and polymorphic transformation of fats and fatty acids. In: Garti N, Sato K (eds) Crystallization and polymorphism of fats and fatty acids. Marcel Dekker, New York, pp 267–303

    Google Scholar 

  • Goud NR, Gangavaram S et al (2012) Novel furosemide cocrystals and selection of high solubility drug forms. J Pharm Sci 101:664–680

    Article  CAS  PubMed  Google Scholar 

  • Granero GE, Longhi MR et al (2010) Biowaiver monographs for immediate release solid oral dosage forms: furosemide. J Pharm Sci 99:2544–2556

    Article  CAS  PubMed  Google Scholar 

  • Hagemann JW (1988) Thermal behavior and polymorphism of acylglycerides. In: Garti N, Sato K (eds) Crystallization and polymorphism of fats and fatty acids. Marcel Dekker, New York, pp 9–96

    Google Scholar 

  • Jackson K (2000) Drug excipient interactions and their effect on absorption. Pharm Sci Technol Today 3:336–345

    Article  CAS  PubMed  Google Scholar 

  • Kasongo WAK, Pardeike J et al (2011) Selection and characterization of suitable lipid excipients for use in the manufacture of didanosine-loaded solid lipid nanoparticles and nanostructured lipid carriers. J Pharm Sci 100:5185–5196

    Article  CAS  PubMed  Google Scholar 

  • Mariappan G, Sundaraganesan N (2014) FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone. J Mol Struct 1063:192–202

    Article  CAS  Google Scholar 

  • Marini A, Berbenni V et al (2003) Drug-excipient compatibility studies by physicochemical techniques. The case of indomethacin. J Therm Anal Calorim 73:529–545

    Article  CAS  Google Scholar 

  • Matsuda Y, Tatsumi E (1990) Physicochemical characterization of furosemide modifications. Int J Pharm 60:11–26

    Article  CAS  Google Scholar 

  • McDaid FM, Barker SA et al (2003) Further investigations into the use of high sensitivity differential scanning calorimetry as a means of predicting drug-excipient interactions. Int J Pharm 252:235–240

    Article  CAS  PubMed  Google Scholar 

  • Monkhouse DC (1984) Stability aspects of preformulation and formulation of solid pharmaceuticals. Drug Dev Ind Pharm 10:1373–1412

    Article  CAS  Google Scholar 

  • Mura P, Faucci MT et al (1998) Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy. J Pharm Biomed Anal 18:151–163

    Article  CAS  PubMed  Google Scholar 

  • Ozyazıcı M, Gokce EH et al (2006) Release and diffusional modeling of metronidazole lipid matrices. Eur J Pharm Biopharm 63:331–339

    Article  PubMed  Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable device. J Contrl Release 5:37–42

    Article  CAS  Google Scholar 

  • Rosiaux Y, Jannin V et al (2006) Solid lipid excipients-matrix agents for sustained drug delivery. J Contrl Rel 188:18–30

    Article  Google Scholar 

  • Rowe RC, Sheskey PJ et al (2009) Handbook of pharmaceutical excipients, 6th edn. Pharmaceutical Press, London

    Google Scholar 

  • Saupe A, Gordon KC et al (2006) Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm 314:56–62

    Article  CAS  PubMed  Google Scholar 

  • Schoenitz M, Joseph S et al (2014) Controlled polymorphic transformation of continuously crystallized solid lipid nanoparticles in a microstructured device: a feasibility study. Eur J Pharm Biopharm 86:324–331

    Article  CAS  PubMed  Google Scholar 

  • Shin SC, Kim J (2003) Physicochemical characterization of solid dispersion of furosemide with TPGS. Int J Pharm 251:79–84

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui A, Alayoubi A et al (2014) The effect of emulsifying wax on the physical properties of CTAB-based solid lipid nanoparticles (SLN). Pharm Dev Technol 19:125–128

    Article  CAS  PubMed  Google Scholar 

  • Silva RC, Semaan FS et al (2013) Thermal behavior of furosemide. J Therm Anal Calorim 111:1933–1937

    Article  Google Scholar 

  • Singh SK, Verma PRP et al (2010) Glibenclamide-loaded self-nanoemulsifying drug delivery system: development and characterization. Drug Dev Ind Pharm 36:933–945

    Article  CAS  PubMed  Google Scholar 

  • Tita B, Fulias A et al (2011) Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed Anal 56:221–227

    Article  CAS  PubMed  Google Scholar 

  • Valladao DMS, De Oliveira LCS et al (1996) Thermal decomposition of some diuretic agents. J Therm Anal 46:1291–1299

    Article  CAS  Google Scholar 

  • Wolfgang M, Mader K (2001) Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  Google Scholar 

  • Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22:11–23

    Article  CAS  PubMed  Google Scholar 

  • Zordi ND, Moneghini M et al (2012) Applications of supercritical fluids to enhance the dissolution behaviors of furosemide by generation of microparticles and solid dispersions. Eur J Pharm Biopharm 81:131–141

    Article  PubMed  Google Scholar 

  • Zvonar A, Berginc K et al (2010) Microencapsulation of self-microemulsifying system: improving solubility and permeability of furosemide. Int J Pharm 388:151–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This article does not contain any studies with human and animal subjects performed by any of the authors. All authors (H. Ali, S. K. Singh, P. R. P. Verma) declare that they have no confolict of interest. Authors thank University Grants Commission (UGC), Government of India, for providing financial assistance for this research under UGC BSR (F-7-32/2007 BSR), and grateful to Central Instrumentation Facility (CIF), BIT, Mesra, Ranchi for providing technical support and instrument facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Singh, S.K. & Verma, P.R.P. Preformulation and physicochemical interaction study of furosemide with different solid lipids. Journal of Pharmaceutical Investigation 45, 385–398 (2015). https://doi.org/10.1007/s40005-015-0191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-015-0191-2

Keywords

Navigation