Skip to main content
Log in

Size Control in the Nanoprecipitation Process of Stable Iodine (127I) Using Microchannel Reactor—Optimization by Artificial Neural Networks

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, nanosuspension of stable iodine (127I) was prepared by nanoprecipitation process in microfluidic devices. Then, size of particles was optimized using artificial neural networks (ANNs) modeling. The size of prepared particles was evaluated by dynamic light scattering. The response surfaces obtained from ANNs model illustrated the determining effect of input variables (solvent and antisolvent flow rate, surfactant concentration, and solvent temperature) on the output variable (nanoparticle size). Comparing the 3D graphs revealed that solvent and antisolvent flow rate had reverse relation with size of nanoparticles. Also, those graphs indicated that the solvent temperature at low values had an indirect relation with size of stable iodine (127I) nanoparticles, while at the high values, a direct relation was observed. In addition, it was found that the effect of surfactant concentration on particle size in the nanosuspension of stable iodine (127I) was depended on the solvent temperature.

Nanoprecipitation process of stable iodine (127I) and optimization of particle size using ANNs modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Lakshmi P, Kumar GA. Nanosuspension technology: a review. Int J Pharm Sci. 2010;2(4):35–40.

    Google Scholar 

  2. Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm. 2006;312(1):179–86.

    Article  CAS  PubMed  Google Scholar 

  3. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews. 2001;47(1):3–19.

    Article  PubMed  Google Scholar 

  4. Chingunpituk J. Nanosuspension technology for drug delivery. Walailak J Sci Tech. 2007;4(2):139–53.

    Google Scholar 

  5. Lindfors L, Skantze P, Skantze U, Westergren J, Olsson U. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir. 2007;23(19):9866–74.

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–69.

    Article  CAS  PubMed  Google Scholar 

  7. Pu X, Sun J, Li M, He Z. Formulation of nanosuspensions as a new approach for the delivery of poorly soluble drugs. Curr Nanosci. 2009;5(4):417–27.

    Article  CAS  Google Scholar 

  8. Patravale VB, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827–40.

    Article  CAS  PubMed  Google Scholar 

  9. Aghajani M, Shahverdi AR, Rezayat SM, Amini MA, Amani A. Preparation and optimization of acetaminophen nanosuspension through nanoprecipitation using microfluidic devices: an artificial neural networks study. Pharm Dev Technol. 2013;18(3):609–18.

    Article  CAS  PubMed  Google Scholar 

  10. Weibel DB, Whitesides GM. Applications of microfluidics in chemical biology. Curr Opin Chem Biol. 2006;10(6):584–91.

    Article  CAS  PubMed  Google Scholar 

  11. Voldman J, Gray ML, Schmidt MA. Microfabrication in biology and medicine. Annu Rev Biomed Eng. 1999;1(1):401–25.

    Article  CAS  PubMed  Google Scholar 

  12. Crowe CT, Elger DF, Roberson JA. Engineering fluid mechanics. Hoboken: Wiley; 2005.

    Google Scholar 

  13. Miyazaki M, Honda T, Yamaguchi H, Briones MPP, Maeda H. Enzymatic processing in microfluidic reactors. Biotechnol Genet Eng Rev. 2008;25(1):405–28.

    Article  CAS  PubMed  Google Scholar 

  14. Weigl BH, Bardell RL, Cabrera CR. Lab-on-a-chip for drug development. Adv Drug Deliv Rev. 2003;55(3):349–77.

    Article  CAS  PubMed  Google Scholar 

  15. Panagiotou T, Mesite SV, Fisher RJ. Production of norfloxacin nanosuspensions using microfluidics reaction technology through solvent/antisolvent crystallization. Ind Eng Chem Res. 2009;48(4):1761–71.

    Article  CAS  Google Scholar 

  16. Wang J-X, Zhang Q-X, Zhou Y, Shao L, Chen J-F. Microfluidic synthesis of amorphous cefuroxime axetil nanoparticles with size-dependent and enhanced dissolution rate. Chem Eng J. 2010;162(2):844–51.

    Article  CAS  Google Scholar 

  17. Schianti JN, Cerize NN, de Oliveira AM, Derenzo S, Seabra AC, Góngora-Rubio MR. Rifampicin nanoprecipitation using flow focusing microfluidic device. J Nanomedicine Nanotechnol. 2013;4(4):2–172.

    Article  Google Scholar 

  18. Ali HS, York P, Blagden N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int J Pharm. 2009;375(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  19. Ali HS, Blagden N, York P, Amani A, Brook T. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors. Eur J Pharm Sci. 2009;37(3):514–22.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao H, Wang J-X, Wang Q-A, Chen J-F, Yun J. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor. Ind Eng Chem Res. 2007;46(24):8229–35.

    Article  CAS  Google Scholar 

  21. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal. 2000;22(5):717–27.

    Article  CAS  PubMed  Google Scholar 

  22. Amani A, Mohammadyani D. Artificial neural networks: applications in nanotechnology. Artificial neural networks—application Rijeka. INTECH; 2011.

  23. Shao Q, Rowe RC, York P. Comparison of neurofuzzy logic and neural networks in modelling experimental data of an immediate release tablet formulation. Eur J Pharm Sci. 2006;28(5):394–404.

    Article  CAS  PubMed  Google Scholar 

  24. Amani A, York P, Chrystyn H, Clark BJ. Factors affecting the stability of nanoemulsions—use of artificial neural networks. Pharm Res. 2010;27(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  25. Muthu M, Singh S. Poly (D, L-Lactide) nanosuspensions of risperidone for parenteral delivery: formulation and in-vitro evaluation. Current Drug Deliv. 2009;6(1):62–8.

    Article  CAS  Google Scholar 

  26. Amani A, York P, Chrystyn H, Clark BJ, Do DQ. Determination of factors controlling the particle size in nanoemulsions using artificial neural networks. Eur J Pharm Sci. 2008;35(1):42–51.

    Article  CAS  PubMed  Google Scholar 

  27. Aghajani M, Shahverdi AR, Amani A. The use of artificial neural networks for optimizing Polydispersity Index (PDI) in nanoprecipitation process of acetaminophen in microfluidic devices. AAPS PharmSciTech. 2012;13(4):1293–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rosenfeld C, Serra C, Brochon C, Hadziioannou G. Influence of micromixer characteristics on polydispersity index of block copolymers synthesized in continuous flow microreactors. Lab Chip. 2008;8(10):1682–7.

    Article  CAS  PubMed  Google Scholar 

  29. Ali HS, York P, Ali A, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release. 2011;149(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  30. Su Y-F, Kim H, Kovenklioglu S, Lee W. Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization. J Solid State Chem. 2007;180(9):2625–9.

    Article  CAS  Google Scholar 

  31. Zhang J-Y, Shen Z-G, Zhong J, Hu T-T, Chen J-F, Ma Z-Q, et al. Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. Int J Pharm. 2006;323(1):153–60.

    CAS  PubMed  Google Scholar 

  32. Fokin VM, Yuritsyn NS, Zanotto ED. Nucleation and crystallization kinetics in silicate glasses: theory and experiment. Nucleation Theory Appl. 2005:74–125.

  33. Matteucci ME, Hotze MA, Johnston KP, Williams RO. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22(21):8951–9.

    Article  CAS  PubMed  Google Scholar 

  34. Dong Y, Ng WK, Shen S, Kim S, Tan RB. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int J Pharm. 2009;375(1):84–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported by the vice-chancellor of research at Bushehr University of Medical Sciences and Health Services grant no 20-18-3-46333. The author wishes also to thank Dr. Afshin Ostovar for his support in this research.

Conflict of Interest

The authors express that they have no conflicts of interest declaration to display.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Aghajani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghajani, M.H., Pashazadeh, A.M., Mostafavi, S.H. et al. Size Control in the Nanoprecipitation Process of Stable Iodine (127I) Using Microchannel Reactor—Optimization by Artificial Neural Networks. AAPS PharmSciTech 16, 1059–1068 (2015). https://doi.org/10.1208/s12249-015-0293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0293-1

KEY WORDS

Navigation