Skip to main content

Advertisement

Log in

Effects of Molecular Weight and Loading on Matrix Metalloproteinase-2 Mediated Release from Poly(Ethylene Glycol) Diacrylate Hydrogels

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Herein, we report on continued efforts to understand an implantable poly(ethylene glycol) diacrylate (PEGDA) hydrogel drug delivery system that responds to extracellular enzymes, in particular matrix metalloproteinase-2 (MMP-2) to provide controlled drug delivery. By attaching peptide as pendant groups on the hydrogel backbone, drug release occurs at an accelerated rate in the presence of active protease. We investigated MMP-2 entry and optimized parameters of the drug delivery system. Mesh size for different PEGDA molecular weight macromers was measured with PEGDA 3,400 hydrogels having a mesh size smaller than the dimensions of MMP-2 and PEGDA 10,000 and PEGDA 20,000 hydrogels having mesh sizes larger than MMP-2. Purified MMP-2 increased release of peptide fragment compared to buffer at several loading concentrations. Cell-stimulated release was demonstrated using U-87 MG cells embedded in collagen. GM6001, an MMP inhibitor, diminished release and altered the identity of the released peptide fragment. The increase in ratio of release from PEGDA 10,000 and PEGDA 20,000 hydrogels compared to PEGDA 3,400 hydrogels suggests MMP-2 enters the hydrogel. PEGDA molecular weight of 10,000 and 15 % (w/V) were the optimal conditions for release and handling. The use of protease-triggered drug delivery has great advantage particularly with the control of protease penetration as a parameter for controlling rate of release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Central Brain Tumor Registry of the United States. Statistical report: primary brain tumors in the United States, 1992–1997, 2001. 2001.

  2. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011. CA Cancer J Clin. 2011;61(4):212–36.

    Article  PubMed  Google Scholar 

  3. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.

    Article  PubMed  CAS  Google Scholar 

  4. Central Brain Tumor Registry of the United States. Primary Brain Tumors in the United States. Chicago, IL. 2007–2008.

  5. Tauro JR, Gemeinhart RA. Extracellular protease activation of chemotherapeutics from hydrogel matrices: a new paradigm for local chemotherapy. Mol Pharm. 2005;2(5):435–8.

    Article  PubMed  CAS  Google Scholar 

  6. Tauro JR, Gemeinhart RA. Matrix metalloprotease triggered local delivery of cancer chemotherapeutics. Bioconjug Chem. 2005;16(5):1133–9.

    Article  PubMed  CAS  Google Scholar 

  7. Tauro JR, Lee BS, Lateef SS, Gemeinhart RA. Matrix metalloprotease selective peptide substrates cleavage within hydrogel matrices for cancer chemotherapy activation. Peptides. 2008;29(11):1965–73.

    Article  PubMed  CAS  Google Scholar 

  8. Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials. 1996;17(17):1647–57.

    Article  PubMed  CAS  Google Scholar 

  9. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46.

    Article  PubMed  CAS  Google Scholar 

  10. Kim SW, Bae YH, Okano T. Hydrogels: swelling, drug loading, and release. Pharm Res. 1992;9(3):283–90.

    Article  PubMed  CAS  Google Scholar 

  11. Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, Vlodavsky I. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA. 1996;93(14):7069–74.

    Article  PubMed  CAS  Google Scholar 

  12. Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6(3):227–39.

    Article  PubMed  CAS  Google Scholar 

  13. Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer. 2002;2(9):657–72.

    Article  PubMed  CAS  Google Scholar 

  14. Vartak D, Gemeinhart RA. Matrix metalloproteases: underutilized targets for drug delivery. J Drug Target. 2007;15(1):1–21.

    Article  PubMed  CAS  Google Scholar 

  15. Fridman R. Surface association of secreted matrix metalloproteinases. Cell Surf Proteases. 2003;54:75–100.

    CAS  Google Scholar 

  16. Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today. 2001;6(9):478–82.

    Article  PubMed  CAS  Google Scholar 

  17. Haas TL, Madri JA. Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc Med. 1999;9(3–4):70–7.

    Article  PubMed  CAS  Google Scholar 

  18. Lu MK, Chen PH, Shih YW, Chang YT, Huang ET, Liu CR, et al. alpha-Chaconine inhibits angiogenesis in vitro by reducing matrix metalloproteinase-2. Biol Pharm Bull. 2010;33(4):622–30.

    Article  PubMed  CAS  Google Scholar 

  19. Rao JS, Yamamoto M, Mohaman S, Gokaslan ZL, Fuller GN, Stetler-Stevenson WG, et al. Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis. 1996;14(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  20. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, et al. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis. 1996;14(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  21. Chau Y, Tan FE, Langer R. Synthesis and characterization of dextran-peptide-methotrexate conjugates for tumor targeting via mediation by matrix metalloproteinase II and matrix metalloproteinase IX. Bioconjug Chem. 2004;15(4):931–41.

    Article  PubMed  CAS  Google Scholar 

  22. Chau Y, Langer RS. Important factors in designing targeted delivery of cancer therapeutics via MMP-2 mediation. J Control Release. 2003;91(1–2):239–40.

    Google Scholar 

  23. Albright CF, Graciani N, Han W, Yue E, Stein R, Lai ZH, et al. Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth doxorubicin with less toxicity. Mol Cancer Ther. 2005;4(5):751–60.

    Article  PubMed  CAS  Google Scholar 

  24. Lim SH, Jeong YI, Moon KS, Ryu HH, Jin YH, Jin SG, et al. Anticancer activity of PEGylated matrix metalloproteinase cleavable peptide-conjugated adriamycin against malignant glioma cells. Int J Pharm. 2010;387(1–2):209–14.

    Article  PubMed  CAS  Google Scholar 

  25. Bae M, Cho S, Song J, Lee GY, Kim K, Yang J, et al. Metalloprotease-specific poly(ethylene glycol) methyl ether-peptide-doxorubicin conjugate for targeting anticancer drug delivery based on angiogenesis. Drugs Exptl Clin Res. 2003;29(1):15–23.

    CAS  Google Scholar 

  26. Lee GY, Park K, Kim SY, Byun Y. MMPs-specific PEGylated peptide-DOX conjugate micelles that can contain free doxorubicin. Eur J Pharm Biopharm. 2007;67(3):646–54.

    Article  PubMed  CAS  Google Scholar 

  27. Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release. 2006;111(3):333–42.

    Article  PubMed  CAS  Google Scholar 

  28. Tokatlian T, Shrum CT, Kadoya WM, Segura T. Protease degradable tethers for controlled and cell-mediated release of nanoparticles in 2- and 3-dimensions. Biomaterials. 2010;31(31):8072–80.

    Article  PubMed  CAS  Google Scholar 

  29. Laromaine A, Koh LL, Murugesan M, Ulijn RV, Stevens MM. Protease-triggered dispersion of nanoparticle assemblies. J Am Chem Soc. 2007;129(14):4156–7.

    Article  PubMed  CAS  Google Scholar 

  30. Rawsterne RE, Gough JE, Rutten FJM, Pham NT, Poon WCK, Flitsch SL, et al. Controlling protein retention on enzyme-responsive surfaces. Surf Interface Anal. 2006;38(11):1505–11.

    Article  PubMed  CAS  Google Scholar 

  31. Thornton PD, McConnell G, Ulijn RV. Enzyme responsive polymer hydrogel beads. Chem Commun. 2005;47:5913–5.

    Article  Google Scholar 

  32. Ulijn RV. Enzyme-responsive materials: a new class of smart biomaterials. J Mater Chem. 2006;16(23):2217–25.

    Article  CAS  Google Scholar 

  33. West JL, Hubbell JA. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules. 1999;32(1):241–4.

    Article  CAS  Google Scholar 

  34. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  35. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA. 2003;100(9):5413–8.

    Article  PubMed  CAS  Google Scholar 

  36. Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, et al. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 2003;17(15):2260–2.

    PubMed  CAS  Google Scholar 

  37. Gojgini S, Tokatlian T, Segura T. Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels. Mol Pharm. 2011;8(5):1582–91.

    Article  PubMed  CAS  Google Scholar 

  38. Peppas NA, Keys KB, Torres-Lugo M, Lowman AM. Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Release. 1999;62(1–2):81–7.

    Article  PubMed  CAS  Google Scholar 

  39. Kim J, Hefferan TE, Yaszemski MJ, Lu L. Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds. Tissue Eng, Part A. 2009;15(8):2299–307.

    Article  CAS  Google Scholar 

  40. Bryant SJ, Lynn AD, Kyriakides TR. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mater Res A. 2010;93A(3):941–53.

    Google Scholar 

  41. Salinas CN, Anseth KS. Mixed mode thiol-acrylate photopolymerizations for the synthesis of PEG-peptide hydrogels. Macromolecules. 2008;41(16):6019–26.

    Article  CAS  Google Scholar 

  42. Hughes SW. Archimedes revisited: a faster, better, cheaper method of accurately measuring the volume of small objects. Phys Educ. 2005;40(5):468–74.

    Article  Google Scholar 

  43. Peppas NA. Hydrogels in medicine and pharmacy. Boca Raton: CRC Press; 1986.

    Google Scholar 

  44. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.

    Google Scholar 

  45. Vartak DG. Integrins and matrix metalloprotease-2 as dual targets in angiogenesis. Ph.D. Dissertation, University of Illinois at Chicago, Chicago; 2009.

  46. Vartak DG, Gemeinhart RA. In vitro evaluation of functional interaction of integrin αvβ3 and matrix metalloprotease-2. Mol Pharm. 2009;6(6):1856–67.

    Article  PubMed  CAS  Google Scholar 

  47. Azzam HS, Arand G, Lippman ME, Thompson EW. Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst. 1993;85(21):1758–64.

    Article  PubMed  CAS  Google Scholar 

  48. Lustig S, Peppas NA. Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. J Appl Polym Sci. 1988;36(4):735–47.

    Article  CAS  Google Scholar 

  49. Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, et al. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science. 1999;284(5420):1667–70.

    Article  PubMed  CAS  Google Scholar 

  50. Cowie JMG, Arrighi V. Polymers: chemistry and physics of modern materials. 3rd ed. Boca Raton: CRC Press; 2008.

    Google Scholar 

  51. Brannon-Peppas L. Preparation and characterization of crosslinked hydrophilic networks. In: Brannon-Peppas L, Harland RS, editors. Absorbent Polymer Technology. Amesterdam: Elsevier; 1990. p. 45–65.

    Google Scholar 

  52. Hansen S. Translational friction coefficients for cylinders of arbitrary axial ratios estimated by Monte Carlo simulation. J Chem Phys. 2004;121(18):9111–5.

    Article  PubMed  CAS  Google Scholar 

  53. Tanaka T, Fillmore DJ. Kinetics of swelling gels. J Chem Phys. 1970;70(3):1214–8.

    Article  Google Scholar 

  54. Snoek-van Beurden PAM, Von den Hoff JW. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques. 2005;38(1):73–83.

    Article  PubMed  CAS  Google Scholar 

  55. Rome C, Arsaut J, Taris C, Couillaud F, Loiseau H. MMP-7 (matrilysin) expression in human brain tumors. Mol Carcinog. 2007;46(6):446–52.

    Article  PubMed  CAS  Google Scholar 

  56. Woessner Jr JF, Taplin CJ. Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J Biol Chem. 1988;263(32):16918–25.

    PubMed  CAS  Google Scholar 

  57. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J. Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng. 2000;2:9–29.

    Article  PubMed  CAS  Google Scholar 

  58. Cussler EL. Diffusion: mass transfer in fluid systems. 3rd ed. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to thank Dr. William Beck for use of equipment. We thank Dr. J.H. “Robert” Chang for insightful discussion. This work was supported by NIH R01 NS055095 (RAG). This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR15482 from the National Center for Research Resources, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Gemeinhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, A.E., Tang, M.Y. & Gemeinhart, R.A. Effects of Molecular Weight and Loading on Matrix Metalloproteinase-2 Mediated Release from Poly(Ethylene Glycol) Diacrylate Hydrogels. AAPS J 14, 482–490 (2012). https://doi.org/10.1208/s12248-012-9356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9356-3

KEY WORDS

Navigation