Skip to main content
Log in

The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Enzyme-sensitive hydrogels are a promising class of materials for cell encapsulation and tissue engineering because their ability to be degraded by cell-secreted factors. However, it is well known that nearly all synthetic biomaterials elicit a foreign body response (FBR) upon implantation. Therefore, this study aimed to evaluate the in vitro and in vivo response to an enzyme-sensitive hydrogel. Hydrogels were formed from poly(ethylene glycol) with the peptide crosslinker, C-VPLS↓LYSG-C, which is susceptible to matrix metalloproteinases 2 and 9. We evaluated the hydrogel by exogenously delivered enzymes, encapsulated mesenchymal stem cells as a tissue engineering relevant cell type, and by macrophage-secreted factors in vitro and for the FBR through macrophage attachment in vitro and in a subcutaneous mouse model. These hydrogels rapidly degraded upon exposure to exogenous MMP-2 and to lesser degree with MMP-9. Encapsulated mesenchymal stem cells were capable of degrading the hydrogels via matrix metalloproteinases. Inflammatory macrophages were confirmed to attach to the hydrogels, but were not capable of rapidly degrading the hydrogels. In vivo, these hydrogels remained intact after 4 weeks and exhibited a classic FBR with inflammatory cells at the hydrogel surface and a fibrous capsule. In summary, these findings suggest that while this MMP-2/9 sensitive hydrogel is readily degraded in vitro, it does not undergo rapid degradation by the FBR. Thus, the long term stability of these hydrogels in vivo coupled with the ability for encapsulated cells to degrade the hydrogel makes them promising materials for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Amer, L. D., A. Holtzinger, G. Keller, M. J. Mahoney, and S. J. Bryant. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates. Acta Biomater. 22:103–110, 2015.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, J. Biological responses to materials. Annu. Rev. Mater. Res. 31:81–110, 2001.

    Article  CAS  Google Scholar 

  3. Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20:86–100, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aoki, T., H. Kataoka, M. Morimoto, K. Nozaki, and N. Hashimoto. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke 38:162–169, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Arpino, V., M. Brock, and S. E. Gill. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 44–46:247–254, 2015.

    Article  PubMed  Google Scholar 

  6. Bahar-Shany, K., A. Ravid, and R. Koren. Upregulation of MMP-9 production by TNFalpha in keratinocytes and its attenuation by Vitamin D. J. Cell. Physiol. 222:729–737, 2010.

    CAS  PubMed  Google Scholar 

  7. Bahney, C. S., C.-W. Hsu, J. U. Yoo, J. L. West, and B. Johnstone. A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB J. 25:1486–1496, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Blakney, A. K., M. D. Swartzlander, and S. J. Bryant. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100:1375–1386, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bracher, M., D. Bezuidenhout, M. P. Lutolf, T. Franz, M. Sun, P. Zilla, and N. H. Davies. Cell specific ingrowth hydrogels. Biomaterials 34:6797–6803, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Bryant, S. J., C. R. Nuttelman, and K. S. Anseth. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11:439–457, 2012.

    Article  Google Scholar 

  11. Bryant, S. J., and B. D. Ratner. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6:41–75, 2004.

    Article  PubMed  Google Scholar 

  12. Campbell, D. J., C. H. Kim, and E. C. Butcher. Chemokines in the systemic organization of immunity. Immunol. Rev. 195:58–71, 2003.

    Article  CAS  PubMed  Google Scholar 

  13. Cauwenberghs, S., M. A. Feijge, A. G. Harper, S. O. Sage, J. Curvers, and J. W. Heemskerk. Macrophage matrix metalloproteinase-2/-9 gene and protein expression following adhesion to ECM-derived multifunctional matrices via integrin complexation. FEBS Lett. 580:5313–5320, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Chellat, F., A. Grandjean-Laquerriere, R. Le Naour, J. Fernandes, L. L. Yahia, M. Guenounou, D. Laurent-Maquin, R. Le Naour, J. Fernandes, L. L. Yahia, M. Guenounou, and D. Laurent-Maquin. Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials 26:961–970, 2005.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng, K.-S., Y.-C. Liao, M.-Y. Chen, T.-C. Kuan, Y.-H. Hong, L. Ko, W.-Y. Hsieh, C.-L. Wu, M.-R. Chen, and C.-S. Lin. Circulating matrix metalloproteinase-2 and -9 enzyme activities in the children with ventricular septal defect. Int. J. Biol. Sci. 9:557–563, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chung, E., and K. Healy. Biomimetic artificial ECMs stimulate bone regeneration. J. Biomed. Mater. Res. A 81:815–826, 2006.

    Article  Google Scholar 

  17. Fairbanks, B. D., M. P. Schwartz, A. E. Halevi, C. R. Nuttelman, C. N. Bowman, and K. S. Anseth. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21:5005–5010, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giannandrea, M., and W. C. Parks. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 7:193–203, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goetsch, K. P., M. Bracher, D. Bezuidenhout, P. Zilla, and N. H. Davies. Regulation of tissue ingrowth into proteolytically degradable hydrogels. Acta Biomater. 24:44–52, 2015.

    Article  CAS  PubMed  Google Scholar 

  20. Greggio, C., F. De Franceschi, M. Figueiredo-Larsen, S. Gobaa, A. Ranga, H. Semb, M. Lutolf, and A. Grapin-Botton. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140:4452–4462, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayakawa, T., K. Yamashita, E. Ohuchi, and A. Shinagawa. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J. Cell Sci. 107:2373–2379, 1994.

    CAS  PubMed  Google Scholar 

  22. Hayakawa, T., K. Yamashita, K. Tanzawa, and K. Iwata. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. FEBS Lett. 298:29–32, 1992.

    Article  CAS  PubMed  Google Scholar 

  23. He, X., and E. Jabbari. Material properties and cytocompatibility of injectable MMP degradable poly (lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules 8:780–792, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Holloway, J. L., H. Ma, R. Rai, and J. A. Burdick. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control Release 191:63–70, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, W.-C., G. B. Sala-Newby, A. Susana, J. L. Johnson, and A. C. Newby. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB. PLoS One 7:e42507, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jay, S. M., E. Skokos, F. Laiwalla, M.-M. Krady, and T. R. Kyriakides. Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation. Am. J. Pathol. 171:632–640, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jha, A. K., W. M. Jackson, and K. E. Healy. Controlling osteogenic stem cell differentiation via soft bioinspired hydrogels. PLoS One 9:1–11, 2014.

    Google Scholar 

  28. Kim, S.-Y., J.-G. Lee, W.-S. Cho, K.-H. Cho, J. Sakong, J.-R. Kim, B.-R. Chin, and S.-H. Baek. Role of NADPH oxidase-2 in lipopolysaccharide-induced matrix metalloproteinase expression and cell migration. Immunol. Cell Biol. 88:197–204, 2010.

    Article  CAS  PubMed  Google Scholar 

  29. Koo, B.-H., M. Y. Park, O.-H. Jeon, and D.-S. Kim. Regulatory mechanism of matrix metalloprotease-2 enzymatic activity by factor Xa and thrombin. J. Biol. Chem. 284:23375–23385, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, S. T., J. I. Yun, Y. S. Jo, M. Mochizuki, A. J. van der Vlies, S. Kontos, J. E. Ihm, J. M. Lim, and J. A. Hubbell. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31:1219–1226, 2010.

    Article  CAS  PubMed  Google Scholar 

  31. Li, H., and T. Giorgio. Matrix metalloproteinase responsive, proximity-activated polymeric nanoparticles for siRNA delivery. Adv. Funct. Mater. 29:997–1003, 2012.

    Google Scholar 

  32. Lin, C.-C., C. S. Ki, and H. Shih. Thiol-norbornene photoclick hydrogels for tissue engineering applications. J. Appl. Polym. Sci. 132:41563, 2015.

    PubMed  PubMed Central  Google Scholar 

  33. Luan, Z., A. J. Chase, and A. C. Newby. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arter. Thromb. Vasc. Biol. 23:769–775, 2003.

    Article  CAS  Google Scholar 

  34. Lutolf, M. P., J. L. Lauer-Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields, and J. A. Hubbell. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. USA 100:5413–5418, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lutolf, M. P., N. Tirelli, S. Cerritelli, L. Cavalli, and J. A. Hubbell. Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjugate Chem. 12:1051–1056, 2001.

    Article  CAS  Google Scholar 

  36. Lutolf, M. P., F. E. Weber, G. H. Schmoekel, J. C. Schense, T. Kohler, R. Müller, and J. A. Hubbell. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 21:513–518, 2003.

    Article  CAS  PubMed  Google Scholar 

  37. Luttikhuizen, D. T., M. J. van Amerongen, P. C. de Feijter, A. H. Petersen, M. C. Harmsen, and M. J. A. van Luyn. The correlation between difference in foreign body reaction between implant locations and cytokine and MMP expression. Biomaterials 27:5763–5770, 2006.

    Article  CAS  PubMed  Google Scholar 

  38. Lynn, A. D., A. K. Blakney, T. R. Kyriakides, and S. J. Bryant. Temporal progression of the host response to implanted poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 96:621–631, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lynn, A. D., T. R. Kyriakides, and S. J. Bryant. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 93:941–953, 2010.

    PubMed  Google Scholar 

  40. McKinnon, D. D., A. M. Kloxin, and K. S. Anseth. Synthetic hydrogel platform for three-dimensional culture of embryonic stem cell-derived motor neurons. Biomater. Sci. 1:460, 2013.

    Article  CAS  Google Scholar 

  41. Nagase, H., and G. B. Fields. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40:399–416, 1996.

    Article  CAS  PubMed  Google Scholar 

  42. Newby, A. C. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler. Thromb. Vasc. Biol. 28:2108–2114, 2008.

    Article  CAS  PubMed  Google Scholar 

  43. Nicodemus, G. D., and S. J. Bryant. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B. Rev. 14:149–165, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patterson, J., and J. A. Hubbell. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31:7836–7845, 2010.

    Article  CAS  PubMed  Google Scholar 

  45. Quiding-Järbrink, M., D. A. Smith, and G. J. Bancroft. Production of matrix metalloproteinases in response to mycobacterial infection. Infect. Immun. 69:5661–5670, 2001.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Raza, A., and C. C. Lin. The influence of matrix degradation and functionality on cell survival and morphogenesis in PEG-based hydrogels. Macromol. Biosci. 13:1048–1058, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Rehman, A. A., H. Ahsan, and F. H. Khan. Alpha-2-macroglobulin: a physiological guardian. J. Cell. Physiol. 228:1665–1675, 2013.

    Article  CAS  PubMed  Google Scholar 

  48. Rhee, J. W., K.-W. Lee, D. Kim, Y. Lee, and O.-H. Jeon. NF-kappaB-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. J. Biochem. Mol. Biol. 40:88–94, 2007.

    Article  CAS  PubMed  Google Scholar 

  49. Ries, C., V. Egea, M. Karow, H. Kolb, M. Jochum, and P. Neth. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109:4055–4063, 2007.

    Article  CAS  PubMed  Google Scholar 

  50. Roberts, J. J., and S. J. Bryant. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials 34:9969–9979, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Skaalure, S. C., U. Akalp, F. J. Vernerey, and S. J. Bryant. Tuning reaction and diffusion mediated degradation of enzyme-sensitive hydrogels. Adv. Healthc. Mater. 5:432–438, 2016.

    Article  CAS  PubMed  Google Scholar 

  52. Sokic, S. Enhanced degradation and peptide specificity of MMP-sensitive scaffolds for neovascularization of engineered tissues. ProQuest Diss. Publ. 2013.

  53. Sridhar, B., and K. S. Anseth. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition. Adv. Healthc. Mater. 4:702–713, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Swartzlander, M. D., C. A. Barnes, J. L. Blakney, J. L. Kaar, T. R. Kyriakides, and S. J. Bryant. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 41:26–36, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Swartzlander, M. D., A. D. Lynn, A. K. Blakney, T. R. Kyriakides, and S. J. Bryant. Understanding the host response to cell-laden poly(ethylene glycol)-based hydrogels. Biomaterials 34:952–964, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tian, W., and T. R. Kyriakides. Matrix metalloproteinase-9 deficiency leads to prolonged foreign body response in the brain associated with increased IL-1beta levels and leakage of the blood-brain barrier. Matrix Biol. 28:148–159, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Timms, P. M., N. Mannan, G. A. Hitman, K. Noonan, P. G. Mills, D. Syndercombe-Court, E. Aganna, C. P. Price, and B. J. Boucher. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: mechanisms for inflammatory damage in chronic disorders? QJM—Mon. J. Assoc. Phys. 95:787–796, 2002.

    CAS  Google Scholar 

  58. Turk, B. E., L. L. Huang, E. T. Piro, and L. C. Cantley. Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat. Biotechnol. 19:661–667, 2001.

    Article  CAS  PubMed  Google Scholar 

  59. Turturro, M. V., M. C. Christenson, J. C. Larson, D. A. Young, E. M. Brey, and G. Papavasiliou. MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation. PLoS One 8:e58897, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, H., D. N. Udukala, T. N. Samarakoon, M. T. Basel, M. Kalita, G. Abayaweera, H. Manawadu, A. Malalasekera, C. Robinson, D. Villanueva, P. Maynez, L. Bossmann, E. Riedy, J. Barriga, N. Wang, P. Li, D. A. Higgins, G. Zhu, D. L. Troyer, and S. H. Bossmann. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases. Photochem. Photobiol. Sci. 13:231, 2014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number 1R21AR064436 and by and by the Department of Education’s Graduate Assistantships in Areas of National Need fellowship to LDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie J. Bryant.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, L.D., Bryant, S.J. The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels. Ann Biomed Eng 44, 1959–1969 (2016). https://doi.org/10.1007/s10439-016-1608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1608-4

Keywords

Navigation