1 Introduction and preliminaries

Let \((M, d)\) be a metric space and \(f:M\to M\) a self-mapping. A point \(z\in M\) is said to be a fixed point of f if \(f(z)=z\). Throughout this paper, \(F(f)\) denotes the set of fixed points of f, \(\mathbb{N}\) the set of natural numbers and M a metric space \((M,d)\).

A mapping \(f:M \to M\) is a contraction if there exists \(r\in[0, 1)\) such that for all \(x,y \in M\),

$$ d\bigl(f(x),f(y)\bigr)\leq rd(x,y). $$
(1.1)

The classical Banach contraction principle (BCP) states that ‘Every contraction of a complete metric space has a unique fixed point.’ In 1969, Boyd and Wong [2] obtained the following interesting generalization of the BCP.

Theorem 1.1

Let \(f:M \to M\) a self-mapping of a complete metric space M such that for all \(x, y \in M\),

$$ d\bigl(f(x),f(y)\bigr)\leq\alpha\bigl(d(x,y)\bigr), $$
(1.2)

where \(\alpha:[0,\infty)\rightarrow [0,\infty)\) is upper semicontinuous from the right and \(\alpha(t)< t\) for all \(t>0\). Then f has a unique fixed point in M.

The mapping \(f:M\rightarrow M\) satisfying (1.2) is called a nonlinear contraction [2].

The mapping \(f:M\rightarrow M\) is called weakly contractive, if

$$ d\bigl(f(x),f(y)\bigr)\leq d(x,y)-\varphi\bigl(d(x,y)\bigr) $$
(1.3)

for all \(x, y \in M\), where \(\varphi:[0,\infty)\rightarrow [0,\infty)\) is a continuous and nondecreasing function such that \(\varphi(t)=0\) if and only if \(t=0\).

We note that (1.3) follows from Tasković [3, 4]. For an earlier work in this direction, we refer to Krasnosel’skiĭ et al. [5] and Dugundji and Granas [6]. Also, these mappings have been studied by Aĺber and Guerre-Delabriere [7] and Rhoades [8] as mentioned by Jachymski [9] (see also [10]).

In this paper, we use the following class of mappings satisfying the so-called \((\psi,\varphi)\)-condition (see for details [1119]).

A mapping \(f:M\rightarrow M\) is called \((\psi,\varphi)\)-weakly contractive if

$$ \psi\bigl(d\bigl(f(x),f(y)\bigr)\bigr)\leq\psi\bigl(d(x,y)\bigr)- \varphi\bigl(d(x,y)\bigr) $$
(1.4)

for all \(x,y \in M\), where \(\psi,\varphi:[0,\infty)\rightarrow [0,\infty)\) are both continuous and monotone nondecreasing functions with \(\psi(t)=0=\varphi(t)\) if and only if \(t=0\).

Remark 1.2

We remark that if \(\varphi(t)=(1-r)t\) with \(r\in(0, 1)\), then (1.3) reduces to (1.1). If \(\psi(t)=t\), then (1.4) recovers (1.3). In fact, weakly contractive mappings are also related closely to nonlinear contractions. If α is continuous and \(\varphi(t)=t-\alpha(t)\) then (1.3) turns into (1.2). We have the following irreversible implications (see [13], Example 2.2).

$$ (1.1) \Rightarrow(1.2)\Rightarrow (1.3) \Rightarrow(1.4). $$

Thus \((\psi,\varphi)\)-weakly contractive mappings are more general than its predecessors as listed above.

Theorem 1.3

([13], Theorem 2.1)

Every \((\psi, \varphi)\)-weakly contractive mapping of a complete metric space has a unique fixed point.

It was observed by Đorić [20] that the continuity of φ can be relaxed to lower semi-continuity in Theorem 1.3.

Definition 1.4

Let Y be a nonempty subset of a Banach space X. A mapping \(f:Y\rightarrow Y\) is said to be nonexpansive if for all \(x,y \in Y\),

$$ \bigl\| f(x)-f(y)\bigr\| \leq\|x-y\|. $$

Let X be a real Banach space with its dual space \(X^{\ast}\) and Y be a nonempty closed convex subset of X. Let \(\langle x,x^{\ast}\rangle\) be the dual pairing between \(x \in X\) and \(x^{\ast} \in X^{\ast}\), and \(J:X\rightarrow2^{X^{\ast}}\) be the normalized duality mapping on X defined by

$$ J(x)=\bigl\{ x^{\ast}\in X^{\ast}:\bigl\langle x,x^{\ast} \bigr\rangle =\|x\|^{2}=\bigl\| x^{\ast}\bigr\| ^{2}\bigr\} $$

for all \(x \in X\). Then X is said to be smooth or to have a Gâteaux differentiable norm if \(\lim_{t\rightarrow 0}\frac{\|x+ty\|-\|x\|}{t}\) exists for each \(x,y \in X\) with \(\|x\|=\|y\|=1\). A Banach space X is said to be uniformly smooth whenever given ε> 0 there exists \(\delta> 0\) such that for all \(x,y \in X\) with \(\|x\| = 1\) and \(\|y\| \leq \delta\), then \(\|x + y\| + \|x - y\| < 2 + \varepsilon\|y\|\).

Definition 1.5

[21]

Let Y be a nonempty closed convex subset of a Banach space X and Z a nonempty subset of Y. A retraction from Y to Z is a continuous mapping \(P : Y \rightarrow Z\) such that \(P(x) = x\) for \(x \in Z\). A retraction P from Y to Z is sunny if P satisfies the property: \(P(P(x) + t(x - P(x))) =P(x)\) for all \(x \in Y\) and \(t > 0\), whenever \(P(x)+t(x-P(x)) \in Y\). A retraction P from Y to Z is sunny nonexpansive if P is both sunny and nonexpansive [2224].

A well-known way to find a fixed point of a nonexpansive mapping is to use a contraction to approximate it (Browder [25, 26]). More precisely, fix \(z\in Y\) and define a mapping \(f_{t}:Y\rightarrow Y\) by \(f_{t} (x)=tz+(1-t)S(x)\) for all \(x\in Y\) and given \(t\in(0,1)\). It is easy to see that \(f_{t}\) is a contraction on Y and the BCP ensures that \(f_{t}\) has a unique fixed point \(u_{t}\in Y\), that is,

$$ u_{t}=tz+(1-t)S(u_{t}). $$
(1.5)

In 1967, Halpern [27] introduced the following iteration for an arbitrary \(z \in Y\) and a sequence \(\{\alpha_{n}\}\subset(0,1)\):

$$ u_{0} \in Y,\qquad u_{n+1}=\alpha_{n}z+(1- \alpha_{n})S(u_{n}) $$
(1.6)

for \(n \in\mathbb{N}\), where \(S:Y\to Y\) is a nonexpansive mapping.

In the case \(F(S)\neq\emptyset\), Browder [25] (respectively, Halpern [27]) showed that \(\{u_{t}\}\) (respectively, \(\{u_{n}\}\)) converges strongly to the fixed point of S that is nearest to z in a Hilbert space. A number of extensions and generalizations of their results have appeared in [1, 2834] and elsewhere.

Theorem 1.6

[28]

Let Y be a bounded closed convex subset of a uniformly smooth Banach space X and \(S:Y\to Y\) a nonexpansive mapping. Define a net \(\{x_{\alpha}\}\) in Y by

$$x_{\alpha}=\alpha z+ (1-\alpha)S(x_{\alpha}) $$

for \(\alpha\in(0,1)\), where \(z \in Y\) is fixed. Then \(\{x_{\alpha}\}\) converges strongly to \(P(z)\) as \(\alpha\to0^{+}\), where P is the unique sunny nonexpansive retraction from Y onto \(F(S)\).

Theorem 1.7

[31, 32]

Let X, Y, S, P and z be as in Theorem  1.6. Define a sequence \(\{u_{n}\}\) in Y by

$$u_{1} \in Y,\qquad u_{n+1}=\alpha_{n} z+ (1- \alpha_{n})S(u_{n}) $$

for \(n \in\mathbb{N}\), where \(\{\alpha_{n}\}\) is a real sequence in \((0,1)\) satisfying

$$(\mathrm{C}1)\quad \lim_{n\rightarrow\infty} \alpha_{n}=0,\qquad (\mathrm{C}2)\quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \qquad (\mathrm{C}3)\quad \lim_{n\rightarrow\infty} \frac{\alpha_{n+1}}{\alpha_{n}}=1. $$

Then \(\{u_{n}\}\) converges strongly to \(P(z)\).

In 2000, Moudafi [35] generalized Browder’s and Halpern’s theorems and proved that in a real Hilbert space H, for a given \(u_{0} \in Y\subseteq H\), the sequence \(\{u_{n}\}\) generated by the algorithm

$$ u_{n+1}=\alpha_{n}f(u_{n})+(1- \alpha_{n})S(u_{n}) $$
(1.7)

for \(n \in\mathbb{N}\cup\{0\}\), where \(f:Y\rightarrow Y\) is a contraction, \(S:Y\rightarrow Y\) a nonexpansive mapping and \(\{\alpha_{n}\}\subseteq(0,1)\), satisfying certain conditions, converges strongly to a fixed point of S in Y, which is the unique solution to the following variational inequality:

$$\bigl\langle (I-f)x^{\ast}, x^{\ast}-x\bigr\rangle \geq0, \quad \forall x \in F(S). $$

Moudafi’s generalizations are called viscosity approximations. These methods can be applied to convex optimization, linear programming, monotone inclusions, and elliptic differential equations [30]. In 2004, Xu [36] extended Moudafi’s results from Hilbert spaces to more general Banach spaces. Suzuki [30] used Meir-Keeler type contractions f in (1.7) to find fixed points of S in Banach spaces. Recently, Song and Liu [1] considered the following viscosity approximations:

$$\begin{aligned}& v_{n}=\alpha_{n} f(v_{n})+(1- \alpha_{n})S_{n}(v_{n}); \\& u_{n+1}=\alpha_{n} f(u_{n})+(1- \alpha_{n})S_{n}(u_{n}) \end{aligned}$$

for \(n \in\mathbb{N}\), where \(S_{n}:Y\to Y\) is a sequence of nonexpansive mappings and \(f:Y\to Y\) is a weakly contractive mapping.

In this paper, motivated by Moudafi [35], Kopecká and Reich [37], Suzuki [30] and Song and Liu [1], we study viscosity approximations with a more general class of weakly contractive mappings. We show that Moudafi’s viscosity approximations can be obtained from Browder and Halpern type convergence results.

2 Convergence results

Throughout this section, \(\psi,\varphi:[0,\infty)\rightarrow[0,\infty)\) are continuous and strictly increasing functions such that

$$\psi(t)=0=\varphi(t)\quad \mbox{if and only if}\quad t=0. $$

Our main results are prefaced by the following lemmas and propositions.

Lemma 2.1

[24, 33]

Let Y be a nonempty convex subset of a smooth Banach space X and Z a nonempty subset of Y. Let J be the duality mapping from X into \(X^{\ast}\), and \(P:Y\rightarrow Z\) a retraction. Then P is both sunny and nonexpansive if and only if

$$ \bigl\langle x-P(x),J\bigl(y-P(x)\bigr)\bigr\rangle \leq0 $$

for all \(x \in Y\) and \(y\in Z\).

Lemma 2.2

[38]

Let \(\{\alpha_{n}\}\) be a sequence of positive reals and \(\{\beta_{n}\}\) a sequence of nonnegative reals such that

$$\lim_{n\to\infty}\alpha_{n}=0,\qquad \sum _{n=1}^{\infty}\alpha_{n}=\infty \quad\textit{and} \quad\lim_{n\to\infty}\frac{\beta_{n}}{\alpha_{n}}=0. $$

Further, consider a sequence of nonnegative reals \(\{\ell_{n}\}\) and the recursive inequality

$$\ell_{n+1}\leq\ell_{n}-\alpha_{n}\xi( \ell_{n})+\beta_{n} $$

for \(n\in\mathbb{N}\cup\{0\}\), where \(\xi(\ell)\) is continuous strictly increasing for \(\ell\geq0\) and \(\xi(0)=0\). Then

  1. (1)

    \(\lim_{n\to\infty}\ell_{n}=0\);

  2. (2)

    there exists a subsequence \(\{\ell_{n_{k}}\}\) of \(\{\ell_{n}\}\) such that

    $$\begin{aligned}& \ell_{n_{k}}\leq \xi^{-1} \biggl(\frac{1}{\sum_{m=0}^{n_{k}}\alpha_{m}}+ \frac{\beta _{n_{k}}}{\alpha_{n_{k}}} \biggr), \\ & \ell_{n_{k}+1}\leq \xi^{-1} \biggl(\frac{1}{\sum_{m=0}^{n_{k}}\alpha_{m}}+ \frac{\beta _{n_{k}}}{\alpha_{n_{k}}} \biggr)+\beta_{n_{k}}, \\ & \ell_{n}\leq \ell_{n_{k}+1}-\sum_{m=n_{k+1}}^{n-1} \frac{\alpha_{m}}{\theta_{m}},\quad n_{k}+1< n< n_{k+1},\theta_{m}=\sum_{i=0}^{m} \alpha_{i}, \\ & \ell_{n+1}\leq \ell_{0}-\sum_{m=1}^{n} \frac{\alpha_{m}}{\theta_{m}}\leq\ell_{0},\quad 1\leq n< n_{k}-1, \\ & 1\leq n_{k}\leq s_{\max}=\max \Biggl\{ s, \sum _{m=0}^{s}\frac{\alpha_{m}}{\theta_{m}}\leq \ell_{0} \Biggr\} . \end{aligned}$$

Definition 2.3

[30]

Let \(\{S_{n}\}\) be sequence of nonexpansive mappings on a closed convex subset Y of a Banach space X and \(F=\bigcap_{n=0}^{\infty }F(S_{n})\neq\emptyset\).

  1. (A)

    Let \(\{\alpha_{n}\}\) be a sequence in \((0,1]\) with \({\lim}_{n\rightarrow\infty}\alpha_{n}=0\). Then \((X,Y,\{S_{n}\},\{ \alpha_{n}\})\) is said to satisfy Browder property if for each \(z \in Y\), a sequence \(\{v_{n}\}\) defined by

    $$ v_{n}=\alpha_{n}z+(1-\alpha_{n})S_{n}(v_{n}), $$
    (2.1)

    for \(n \in\mathbb{N}\), converges strongly.

  2. (B)

    Let \(\{\alpha_{n}\}\) be a sequence in \([0,1]\) with \(\lim_{n\rightarrow\infty}\alpha_{n}=0\) and \(\sum_{n = 1}^{\infty}\alpha_{n}=\infty\). Then \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) is said to satisfy Halpern’s property if for each \(z \in Y\), a sequence \(\{v_{n}\}\) defined by

    $$ v_{1}\in Y, \qquad v_{n+1}= \alpha_{n}z+(1-\alpha_{n})S_{n}(v_{n}), $$
    (2.2)

    for \(n \in\mathbb{N}\), converges strongly.

It is well known that if X is a Hilbert space, Y is bounded and \(\{ S_{n}\}\) is a constant sequence S, then \((X,Y,\{S_{n}\},\{1/n\})\) has both the Browder and the Halpern properties (cf. [24, 31, 32, 34]).

Example 2.4

Let \(X=[0,\infty)\) equipped with the norm \(\|\cdot\|\) defined by \(\|x\| =|x|\) and \(Y=[0,1]\) a closed convex subset of X. Define a sequence of nonexpansive mappings \(S_{n}:Y\to Y\) by \(S_{n}(x)=\frac{x}{n}\) for all \(x\in Y\) and \(n\in\mathbb{N}\). Let \(\{\alpha_{n}\}\) be a sequence in \((0,1]\) defined by \(\alpha_{n}=\frac{1}{n^{2}+1}\).

Then

  1. (i)

    It is easy to see that the quadruple \((X,Y,\{S_{n}\},\{\alpha _{n}\})\) satisfies the Browder property and the sequence \(\{v_{n}\}\) defined by

    $$ v_{n}=\alpha_{n}z+(1-\alpha_{n})S_{n}(v_{n}), $$

    for each \(z \in Y\) and \(n \in\mathbb{N}\), converges strongly to 0.

  2. (ii)

    However, the quadruple \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) does not satisfy the Halpern property, as the series \(\sum_{n = 1}^{\infty}\alpha_{n}\) is a convergent series.

  3. (iii)

    If we take \(\alpha_{n}=\frac{1}{n}\), then the quadruple \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) satisfies both the Browder and the Halpern properties. We note that \(\{S_{n}\}\) is not a constant sequence here.

Proposition 2.5

([30], Proposition 4)

Let the quadruple \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) satisfies Browder’s property and \(\{v_{n}\}\) is a sequence in Y, defined by (2.1). If \(P(z)=\lim_{n\to\infty}v_{n}\) for each \(z \in Y\) then P is a nonexpansive mapping on Y.

Proposition 2.6

([30], Proposition 5)

Let the quadruple \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) satisfies Halpern’s property and \(\{v_{n}\}\) is a sequence in Y, defined by (2.2). If \(P(z)=\lim_{n\to\infty}v_{n}\) for each \(z \in Y\) then

  • \(P:Y\to Y\) is a nonexpansive mapping;

  • \(P(z)\) does not depend on the initial point \(v_{1}\).

Proposition 2.7

Let Y be a closed convex subset of a smooth Banach space X and Z a nonempty subset of Y. Let \(S:Y\rightarrow Y\) be a nonexpansive mapping, \(P:Y\to Z\) a unique sunny nonexpansive retraction, and \(T:Y\rightarrow Y\) a \((\psi, \varphi)\)-weakly contractive mapping with ψ convex. Then

  1. (a)

    the composite mapping \(S\circ T\) is \((\psi, \varphi )\)-weakly contractive on Y;

  2. (b)

    the mapping \(S_{t}=tT+(1-t)S\) for \(t\in(0,1)\) is \((\psi, \phi)\)-weakly contractive on Y and \(u_{t}\) is the unique solution of the fixed point equation

    $$ u_{t}=tT(u_{t})+(1-t)S(u_{t}), $$

    where \(\phi(s)=t \varphi(s)\) for each fixed \(t\in(0,1)\);

  3. (c)

    \(P(T(z))=z\) if and only if \(z \in Y\) is the unique solution of the variational inequality

    $$ \bigl\langle T(z)-z,J(y-z)\bigr\rangle \leq0 $$
    (2.3)

    for all \(y\in Z\).

Proof

  1. (a)

    For any \(x,y \in Y\) we have

    $$\bigl\| S\bigl(T(x)\bigr)-S\bigl(T(y)\bigr) \bigr\| \leq \bigl\| T(x)-T(y) \bigr\| . $$

    Since ψ is nondecreasing and T is a \((\psi, \varphi)\)-weakly contractive, the above inequality reduces to

    $$\begin{aligned} \psi\bigl( \bigl\| S\bigl(T(x)\bigr)-S\bigl(T(y)\bigr) \bigr\| \bigr) \leq& \psi\bigl( \bigl\| T(x)-T(y) \bigr\| \bigr) \\ \leq&\psi\bigl( \|x-y \| \bigr)-\varphi\bigl( \|x-y \| \bigr). \end{aligned}$$

    Therefore the mapping \(S\circ T\) is a \((\psi, \varphi)\)-weakly contractive.

  2. (b)

    Let \(x,y \in Y\). Then for each fixed \(t\in(0,1)\), we have

    $$\begin{aligned} \bigl\| S_{t}(x)-S_{t}(y) \bigr\| =& \bigl\| \bigl(tT(x)+(1-t)S(x)\bigr)- \bigl(tT(y)+(1-t)S(y)\bigr)\bigr\| \\ \leq&(1-t)\bigl\| S(x)-S(y)\bigr\| + t \bigl\| T(x)-T(y)\bigr\| \\ \leq&(1-t) \|x-y \| + t \bigl\| T(x)-T(y)\bigr\| . \end{aligned}$$

    Since ψ is nondecreasing, the above inequality reduces to

    $$\begin{aligned} \psi\bigl( \bigl\| S_{t}(x)-S_{t}(y)\bigr\| \bigr) \leq&\psi \bigl((1-t) \|x-y \|+t \bigl\| T(x)-T(y)\bigr\| \bigr). \end{aligned}$$

    Convexity of ψ implies

    $$\begin{aligned} \psi\bigl( \bigl\| S_{t}(x)-S_{t}(y)\bigr\| \bigr) \leq&(1-t)\psi\bigl( \|x-y \| \bigr)+t\psi\bigl(\bigl\| T(x)-T(y)\bigr\| \bigr). \end{aligned}$$

    Since T is \((\psi, \varphi)\)-weakly contractive, we have

    $$\begin{aligned} \psi\bigl(\bigl\| S_{t}(x)-S_{t}(y)\bigr\| \bigr) \leq&(1-t)\psi\bigl(\|x-y \|\bigr)+t \bigl[\psi\bigl(\|x-y\| \bigr)-\varphi\bigl(\|x-y \|\bigr) \bigr] \\ =&\psi\bigl(\|x-y \|\bigr)-t\varphi\bigl(\|x-y \|\bigr). \end{aligned}$$

    Let \(\phi(s)=t \varphi(s)\). Then

    $$\begin{aligned} \psi\bigl(\bigl\| S_{t}(x)-S_{t}(y)\bigr\| \bigr) \leq& \psi\bigl(\|x-y \|\bigr)-\phi\bigl(\|x-y \|\bigr). \end{aligned}$$

    Thus, the mappings \(S_{t}\) is \((\psi,\phi)\)-weakly contractive and by Theorem 1.3, \(S_{t}\) has a unique fixed point \(u_{t}\) in Y.

  3. (c)

    By (a) and Proposition 2.5, the mapping \(P\circ T\) is \((\psi,\phi)\)-weakly contractive. By Theorem 1.3, \(P\circ T\) has a unique fixed point \(P(T(z))=z\in Z\). By Lemma 2.1, such a \(z\in Z\) satisfies (2.3). Next, we show that the variational inequality (2.3) has a unique solution. Let \(w\in Y\) be another solution of (2.3). Then

    $$ \bigl\langle T(w)-w, J(z-w) \bigr\rangle \leq0 $$
    (2.4)

    and

    $$ \bigl\langle T(z)-z, J(w-z) \bigr\rangle \leq0. $$
    (2.5)

    Adding (2.4) and (2.5)

    $$\begin{aligned} 0 \geq& \bigl\langle w-z-\bigl(T(w)-T(z)\bigr), J(w-z) \bigr\rangle \\ =& \bigl\| w-z-\bigl(T(w)-T(z)\bigr) \bigr\| \|w-z \| \\ \geq& \|w-z \|^{2}- \bigl\| T(w)-T(z)\bigr\| \|w-z \| \\ =& \|w-z \| \bigl\{ \|w-z \|- \bigl\| T(w)-T(z)\bigr\| \bigr\} , \end{aligned}$$

    which implies that

    $$\|w-z \|- \bigl\| T(w)-T(z)\bigr\| \leq0 \quad\text{or}\quad \|w-z \|\leq\bigl\| T(w)-T(z)\bigr\| . $$

    Since ψ is nondecreasing and T is a \((\psi, \varphi)\)-weakly contractive, we have

    $$\begin{aligned} \psi\bigl( \|w-z \| \bigr) \leq& \psi\bigl( \bigl\| T(w)-T(z)\bigr\| \bigr) \\ \leq&\psi\bigl( \|w-z \| \bigr)-\varphi\bigl( \|w-z \| \bigr). \end{aligned}$$

Therefore \(\varphi( \|w-z \| )\leq0\), and \(w=z\). □

Now we present our first convergence result.

Theorem 2.8

Suppose the quadruple \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) satisfies Browder’s property and \(T:Y\rightarrow Y\) is a \((\psi,\varphi)\)-weakly contractive mapping with ψ convex. For each \(z \in Y\), put \(P(z)=\lim_{n\to\infty}v_{n}\), where \(\{v_{n}\}\) is a sequence in Y defined by (2.1). Then the sequence \(\{u_{n} \}\subset Y\) defined by

$$ u_{n}=\alpha_{n}T(u_{n})+(1- \alpha_{n})S_{n}(u_{n}), $$

for \(n\in\mathbb{N}\), converges strongly to \(P(T(z))=z\in Y\).

Proof

Proposition 2.7(b) ensures the existence and uniqueness of \(\{u_{n}\}\). It follows from Proposition 2.7(a) and Proposition 2.5 that \(P\circ T\) is a \((\psi, \varphi)\)-weakly contractive mapping on Y. Therefore, by Theorem 1.3 there exists a unique element \(z \in Y\) such that \(P(T(z)) = z\). Define a sequence \(\{v_{n} \}\) in Y by

$$ v_{n}=\alpha_{n}T(z)+(1-\alpha_{n})S_{n}(v_{n}) $$

for \(n\in\mathbb{N}\). Then it is easy to see that \(\{v_{n}\}\) converges strongly to \(P(T(z))\).

Now, for \(n \in\mathbb{N}\),

$$\begin{aligned} \|u_{n}-v_{n} \| \leq&(1-\alpha_{n}) \bigl\| S_{n}(u_{n})-S_{n}(v_{n}) \bigr\| + \alpha_{n} \bigl\| T(u_{n})-T(z)\bigr\| \\ \leq& (1-\alpha_{n}) \|u_{n}-v_{n} \|+ \alpha_{n} \bigl\| T(u_{n})-T(z)\bigr\| \end{aligned}$$

or

$$\|u_{n}-v_{n} \|\leq\bigl\| T(u_{n})-T(z)\bigr\| . $$

Since ψ is nondecreasing, we have

$$\begin{aligned} \psi\bigl(\|u_{n}-v_{n} \|\bigr) \leq& \psi\bigl( \bigl\| T(u_{n})-T(z)\bigr\| \bigr). \end{aligned}$$

Further, \((\psi,\varphi)\)-weak contractivity of T implies

$$\begin{aligned} \psi\bigl(\|u_{n}-v_{n} \|\bigr) \leq& \psi\bigl(\|u_{n}-z \|\bigr)- \varphi\bigl(\|u_{n}-z\|\bigr) \\ \leq& \psi\bigl( \|u_{n}-v_{n} \|+\|v_{n}-z\|\bigr)- \varphi\bigl(\|u_{n}-z\|\bigr). \end{aligned}$$

Since \(v_{n}\to z\) as \(n\to\infty\), we get

$$\begin{aligned} \mathop{ \overline{\lim}} _{n \to\infty} \psi\bigl(\|u_{n}-v_{n} \|\bigr) \leq& \mathop{ \overline{\lim}} _{n \to\infty}\psi\bigl( \|u_{n}-v_{n} \|+\|v_{n}-z \|\bigr)- \mathop{\underline{\lim} } _{n \to\infty}\varphi\bigl( \|u_{n}-z\|\bigr) \\ =& \mathop{ \overline{\lim}} _{n \to\infty }\psi\bigl(\|u_{n}-v_{n} \|\bigr) -\mathop{\underline{\lim} } _{n \to \infty}\varphi\bigl(\|u_{n}-z\|\bigr), \end{aligned}$$

or

$$\begin{aligned} \mathop{\underline{\lim} } _{n \to\infty }\varphi\bigl(\|u_{n}-z\|\bigr) \leq& 0. \end{aligned}$$

The continuity of φ and \(\varphi(0)=0\) imply that

$$\underset{n\rightarrow\infty}{\lim}\|u_{n}-z \|=0. $$

Therefore \(\{u_{n}\}\) converges strongly to z. □

Corollary 2.9

Let X, Y, \(\{S_{n}\}\), \(\{v_{n}\}\), P, z and \(\{\alpha_{n}\}\) be as in Theorem  2.8 and \(T:Y\rightarrow Y\) a weakly contractive mapping. Then the sequence \(\{u_{n} \}\subset Y\) defined by

$$ u_{n}=\alpha_{n}T(u_{n})+(1- \alpha_{n})S_{n}(u_{n}), $$

for \(n\in\mathbb{N}\), converges strongly to \(P(T(z))=z\in Y\).

Proof

This follows from Theorem 2.8 when \(\psi(t)=t\). □

Example 2.10

Let \((X, \|\cdot\|)\) and Y be as in Example 2.4. Define the mappings \(S_{n},T:Y\to Y\) by

$$S_{n}(x)=x\quad\text{for all $x\in Y$ and $n\in\mathbb{N}$}\quad \text{and}\quad T(x) =1-\frac{x}{2}\quad\text{for all $x\in Y$.} $$

Let \(\psi,\varphi:[0,\infty)\rightarrow[0,\infty)\) be the functions defined by

$$\psi(t)=t \quad\text{and}\quad \varphi(t)=\frac{t}{2}. $$

Then the mapping \(S_{n}\) is nonexpansive for each \(n\in\mathbb{N}\) and T is \((\psi,\varphi)\)-weakly contractive.

Let \(\{\alpha_{n}\}\) be a sequence in \((0,1]\) defined by \(\alpha_{n}=\frac {1}{n+1}\). Then the quadruple \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) satisfies the Browder property and for each \(z\in Y\), we have

$$\begin{aligned} v_{n} =& z \alpha_{n} +(1-\alpha_{n})S_{n}(v_{n}) \\ =& z \frac{1}{n+1} + \biggl(1-\frac{1}{1+n} \biggr)v_{n}, \end{aligned}$$

or

$$v_{n}=z. $$

By Theorem 2.8, put \(P(z)=\lim_{n\to\infty} v_{n}=z\). Then P is an identity mapping. Now

$$\begin{aligned} u_{n} =& \alpha_{n} T(u_{n})+(1- \alpha_{n})S_{n}(u_{n}) \\ =&\frac{1}{n+1} \biggl[1-\frac{u_{n}}{2} \biggr] + \biggl(1- \frac {1}{1+n} \biggr)u_{n}, \end{aligned}$$

or

$$u_{n}= \frac{2}{3}. $$

Now \(\lim_{n\to\infty} u_{n}=\frac{2}{3}=P(T(\frac{2}{3}))\). Thus the quadruple \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) satisfies all the conditions of Theorem 2.8 and the sequence \(\{u_{n}\}\) strongly converges to \(\frac{2}{3}\).

The following theorem is our second convergence result.

Theorem 2.11

Suppose the quadruple \((X,Y,\{S_{n}\},\{\alpha_{n}\})\) satisfies Halpern’s property and \(T:Y\rightarrow Y\) is a \((\psi,\varphi)\)-weakly contractive mapping with ψ is convex. Put \(P(z)=\lim_{n\to\infty}v_{n}\) for each \(z \in Y\), where \(\{v_{n}\}\) is defined by (2.2). Then the sequence \(\{u_{n} \}\subset Y\) defined by

$$ x_{1}\in Y\quad \textit{and}\quad u_{n+1}= \alpha_{n}T(u_{n})+(1-\alpha_{n})S_{n}(u_{n}) $$

for \(n\in\mathbb{N}\), converges strongly to a unique point \(P(T(z))=z\in Y\).

Proof

By Propositions 2.6 and 2.7(a), the mapping \(P\circ T\) is \((\psi,\varphi)\)-weakly contractive on Y. From Theorem 1.3, there exists a unique \(z\in Y\) such that \(z=P(T(z))\). For \(n\in\mathbb{N}\), we define a sequence \(\{v_{n} \}\) in Y by

$$ v_{n+1}=\alpha_{n}T(z)+(1-\alpha_{n})S_{n}(v_{n}). $$

Then by the assumption \(\{v_{n}\}\) converges strongly to \(P(T(z))\).

Now for \(n\in\mathbb{N}\), we have

$$\|u_{n+1}-v_{n+1} \| = \bigl\| \alpha_{n} \bigl(T(u_{n})-T(z)\bigr)+(1-\alpha _{n}) \bigl(S_{n}(u_{n})-S_{n}(v_{n})\bigr) \bigr\| . $$

Since \(S_{n}\) is nonexpansive and ψ is nondecreasing and convex, we have

$$\begin{aligned} \psi\bigl(\|u_{n+1}-v_{n+1}\|\bigr) =& \psi\bigl(\alpha_{n} \bigl\| T(u_{n})-T(z)\bigr\| +(1-\alpha_{n})\bigl\| S_{n}(u_{n})-S_{n}(v_{n}) \bigr\| \bigr) \\ \leq& \alpha_{n}\psi\bigl(\bigl\| T(u_{n})-T(z)\bigr\| \bigr)+(1- \alpha_{n}) \psi\bigl(\bigl\| S_{n}(u_{n})-S_{n}(v_{n}) \bigr\| \bigr) \\ \leq& \alpha_{n}\psi\bigl(\bigl\| T(u_{n})-T(z)\bigr\| \bigr)+(1- \alpha_{n})\psi\bigl(\|u_{n}-v_{n}\|\bigr). \end{aligned}$$

By \((\psi, \varphi)\)-weak contractivity of T, we get

$$\begin{aligned} \psi\bigl(\|u_{n+1}-v_{n+1}\|\bigr) \leq&\alpha_{n}\bigl[ \psi\bigl(\|u_{n}-z\|\bigr)-\varphi\bigl(\| u_{n}-z\|\bigr)\bigr] +(1- \alpha_{n})\psi\bigl(\| u_{n}-v_{n}\|\bigr) \\ \leq&\alpha_{n}\bigl[\psi\bigl(\|u_{n}-v_{n}\|+ \|v_{n}-z\|\bigr)-\varphi \bigl(\|u_{n}-v_{n}\|+\| v_{n}-z\|\bigr)\bigr] \\ &{}+ (1-\alpha_{n})\psi \bigl(\|u_{n}-v_{n}\|\bigr). \end{aligned}$$

The continuity of \(\psi, \varphi\) and \(v_{n}\to z\) as \(n\to\infty\) imply that

$$\begin{aligned}& \lim_{n\rightarrow\infty}\psi \bigl( \|u_{n+1}-v_{n+1} \| \bigr) \\& \quad \leq\lim_{n\rightarrow\infty} \alpha_{n}\bigl[\psi\bigl( \|u_{n}-v_{n}\|\bigr)-\varphi\bigl(\|u_{n}-v_{n} \|\bigr)+ (1-\alpha_{n})\psi \bigl(\| u_{n}-v_{n}\|\bigr)\bigr] \\& \quad=\lim_{n\rightarrow\infty} \bigl[\psi\bigl(\|u_{n}-v_{n} \|\bigr)-\alpha_{n}\varphi\bigl(\|u_{n}-v_{n}\|\bigr)\bigr] \\& \quad\leq\lim_{n\rightarrow\infty} \bigl[\psi\bigl(\|u_{n}-v_{n} \|\bigr)-\alpha_{n}\varphi\bigl(\|u_{n}-v_{n}\|\bigr)+ \alpha_{n}\|v_{n}-z\|\bigr]. \end{aligned}$$

Thus, for some (sufficiently large) \(N_{0}\leq n\), we have

$$\begin{aligned} \psi\bigl( \|u_{n+1}-v_{n+1} \| \bigr) \leq& \psi \bigl( \|u_{n}-v_{n} \|\bigr)-\alpha_{n}\varphi \bigl(\|u_{n}-v_{n}\|\bigr)+ \alpha_{n}\|v_{n}-z\|. \end{aligned}$$

For \(\ell_{n}=\psi(\|u_{n}-v_{n}\|)\), we get the following recursive inequality:

$$\ell_{n+1}\leq\ell_{n}-\alpha_{n}\varphi( \ell_{n})+\beta_{n}, $$

where \(\varepsilon_{n}=\|v_{n}-z\|\) and \(\beta_{n}=\alpha_{n}\varepsilon_{n}\). Now, by Lemma 2.2,

$$\lim_{n\to\infty}\psi\bigl(\|u_{n}-v_{n}\|\bigr)=0. $$

The continuity of ψ and the fact that \(\psi(0)=0\) imply that

$$\lim_{n\to\infty}\|u_{n}-v_{n}\|=0. $$

By the triangle inequality, we have

$$ \lim_{n\rightarrow\infty} \|u_{n}-z \|\leq \lim _{n\rightarrow\infty} \|u_{n}-v_{n} \|+ \lim _{n\rightarrow\infty} \|v_{n}-z \|=0. $$

Therefore \(\{u_{n}\}\) strong convergence of to \(z=P(T(z))\). □

Corollary 2.12

[1]

Let \(X,Y,\{S_{n}\}, \{v_{n}\}, P, z\) and \(\{\alpha_{n}\}\) be as in Theorem  2.11 and \(T:Y\rightarrow Y\) a weakly contractive mapping. Then the sequence \(\{u_{n} \}\subset Y\) defined by

$$ x_{1}\in Y\quad \textit{and}\quad u_{n+1}= \alpha_{n}T(u_{n})+(1-\alpha_{n})S_{n}(u_{n}), $$

for \(n\in\mathbb{N}\), converges strongly to a unique point \(P(T(z))=z\in Y\).

Proof

This follows from Theorem 2.11 when \(\psi(t)=t\). □