1 Introduction

Many mathematicians have recently studied various matrices and analogs of these matrices. Especially, these matrices are the Bernoulli, Pascal and Euler matrices [1,2,3,4,5,6,7,8,9,10,11]. These matrices and their analogs are obtained using numbers and polynomials such as the Bernoulli, Euler, q-Bernoulli, and q-Euler expressions [5, 12,13,14,15,16,17,18].

In this study we are interested in some matrices whose entries are the Bernoulli F-polynomials, Bernoulli–Fibonacci numbers, Euler–Fibonacci numbers and Euler–Fibonacci polynomials.

The Fibonacci sequence \(\{ F_{n} \} _{n\geq 0} \) is defined by

$$ F_{n}= \textstyle\begin{cases} F_{n+2}=F_{n+1}+F_{n}, \\ F_{0}=0 ,\qquad F_{1}=1. \end{cases} $$

For convenience of the reader, we provide a summary of the mathematical notations and some basic definitions of the Fibonomial coefficient.

The F-factorial is defined as follows:

$$ F_{n}!=F_{n} F_{n-1} F_{n-2}\cdots F_{1},\qquad F_{0}!=1. $$

The Fibonomial coefficients are defined \(n\geq k\geq 1\) as

$$ \binom{n}{k}_{F}=\frac{F_{n}!}{F_{n-k}!F_{k}!}, $$

with \(\binom{n}{0}_{F}=1\) and \(\binom{n}{k}_{F}=0\) for \(n< k\). Fibonomial coefficients have the following properties:

$$ \binom{n}{k}_{F}=\binom{n}{n-k}_{F} $$

and

$$ \binom{n}{k}_{F}\binom{k}{j}_{F}= \binom{n}{j}_{F}\binom{n-j}{k-j}_{F}. $$

The binomial theorem for the F-analog is given by

$$ ( x+_{F}y ) ^{n}=\sum_{k=0}^{n} \binom{n}{k}_{F}x ^{k}y^{n-k}. $$
(1)

The F-exponential function \(e_{F}^{t}\) is defined by

$$ e_{F}^{t}=\sum_{n=0}^{\infty } \frac{t^{n}}{F_{n}!} $$
(2)

in [19, 20].

2 The Bernoulli F-polynomials and some of its properties

Firstly, we mention the Bernoulli F-polynomials. Krot [19] defined the Bernoulli F-polynomials. In this section, we obtain an exponential generating function of the Bernoulli F-polynomials. Then we give some properties of the Bernoulli F-polynomials.

Definition 1

([19])

Let \(\binom{n}{k}_{F}\) be Fibonomial coefficients and \(F_{n}\) be the nth Fibonacci numbers, and we use Bernoulli’s F-polynomials of order 1; we define

$$ B_{n,F} ( x ) =\sum_{k\geq 0}\frac{1}{F_{k+1}} \binom{n}{k}_{F} x^{n-k}. $$
(3)

The first few Bernoulli’s F-polynomials are as follows:

$$\begin{aligned}& B_{0,F} ( x ) = 1 , \\& B_{1,F} ( x ) = x+1 , \\& B_{2,F} ( x ) = x^{2}+x+\frac{1}{2} , \\& B_{3,F} ( x ) = x^{3}+2x^{2}+x+\frac{1}{3} , \\& B_{4,F} ( x ) = x^{4}+3x^{3}+3x^{2}+x+ \frac{1}{5} , \\& B_{5,F} ( x ) = x^{5}+5x^{4}+\frac{15}{2}x^{3}+5x^{2}+x+ \frac{1}{8}. \end{aligned}$$

Theorem 1

The exponential generating function of the Bernoulli F-polynomial \(B_{n,F} ( x ) \) is

$$ g ( x ) =\frac{e_{F}^{xt} ( e_{F}^{t}-1 ) }{t}. $$
(4)

Proof

For the proof, we use the F-exponential function \(e_{F}^{t}\).

$$\begin{aligned} \frac{e_{F}^{xt} ( e_{F}^{t}-1 ) }{t} &=\frac{1}{t} \Biggl(\sum _{n=0}^{\infty }x^{n}\frac{t^{n}}{F_{n}!} \Biggr) \Biggl(\sum_{n=0}^{\infty }\frac{t^{n}}{F_{n}!}-1 \Biggr) \\ &= \Biggl( \sum_{n=0}^{\infty }\frac{1}{F_{n+1}} \frac{t^{n}}{F _{n}!} \Biggr) \Biggl( \sum_{n=0}^{\infty }x^{n} \frac{t^{n}}{F _{n}!} \Biggr) \\ &=\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n}\frac{1}{F _{k+1}!} \frac{x^{n-k}}{F_{n-k}!} \Biggr) t^{n} \\ &=\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n}\frac{1}{F _{k+1}}\binom{n}{k}_{F}x^{n-k} \Biggr) \frac{t^{n}}{F_{n}!} \\ &=\sum_{n=0}^{\infty }B_{n,F} ( x ) \frac{t^{n}}{F _{n}!} . \end{aligned}$$

 □

Theorem 2

Let \(B_{n,F} ( x+y )\) be the Bernoulli F-polynomials, we have

$$ B_{n,F} ( x+y ) =\sum_{k=0}^{n} \binom{n}{k}_{F}B _{k,F} (x ) y^{n-k}, $$
(5)

where \(B_{n,F} ( x+y ) =\sum_{k\geq 0}\frac{1}{F _{k+1}}\binom{n}{k}_{F} ( x+_{F}y ) ^{n-k}\) for all nonnegative integers n.

Proof

By virtue of the definition of the Bernoulli F-polynomials we get

$$\begin{aligned} \Biggl( \sum_{n=0}^{\infty }B_{n,F} ( x ) \frac{t ^{n}}{F_{n}!} \Biggr) \Biggl( \sum_{n=0}^{\infty }y^{n} \frac{t ^{n}}{F_{n}!} \Biggr) &=\sum_{n=0}^{\infty } \Biggl( \sum_{k=0}^{n}\frac{B_{k,F} ( x ) }{F_{k}!} \frac{y^{n-k}}{F _{n-k}!} \Biggr) t^{n} \\ &=\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n} \binom{n}{k}_{F}B_{k,F} ( x ) y^{n-k} \Biggr) \frac{t^{n}}{F _{n}!}. \end{aligned}$$
(6)

On the other hand,

$$\begin{aligned} \Biggl( \sum_{n=0}^{\infty }B_{n,F} ( x ) \frac{t ^{n}}{F_{n}!} \Biggr) \Biggl( \sum_{n=0}^{\infty }y^{n} \frac{t ^{n}}{F_{n}!} \Biggr) &= \Biggl( \sum_{n=0}^{\infty } \sum_{k=0}^{n}\frac{1}{F_{k+1}} \binom{n}{k}_{F}x^{n-k}\frac{t^{n}}{F _{n}!} \Biggr) \Biggl( \sum_{n=0}^{\infty }y^{n} \frac{t^{n}}{F _{n}!} \Biggr) \\ &= \Biggl( \sum_{n=0}^{\infty }\frac{1}{F_{n+1}} \frac{t^{n}}{F _{n}!} \Biggr) \Biggl( \sum_{n=0}^{\infty }x^{n} \frac{t^{n}}{F _{n}!} \Biggr) \Biggl( \sum_{n=0}^{\infty }y^{n} \frac{t^{n}}{F _{n}!} \Biggr) \\ &= \Biggl( \sum_{n=0}^{\infty }\frac{t^{n}}{F_{n+1}!} \Biggr) \Biggl(\sum_{n=0}^{\infty } ( x+_{F}y ) ^{n}\frac{t ^{n}}{F_{n}!} \Biggr) \\ &=\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n}\frac{1}{F _{k+1}}\binom{n}{k}_{F} ( x+_{F}y ) ^{n-k} \Biggr) \frac{t ^{n}}{F_{n}!} \\ &=\sum_{n=0}^{\infty }B_{n,F} ( x+y ) \frac{t^{n}}{F _{n}!}. \end{aligned}$$
(7)

Comparing the coefficients of \(\frac{t^{n}}{F_{n}!}\) on both sides of Eqs. (6) and (7), we arrive at the desired result. □

3 The Euler–Fibonacci polynomials and their relation with Bernoulli F-polynomials

In this section, we define the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials. Then we obtain their exponential functions and the relationship between the Bernoulli F-polynomials and these polynomials.

Definition 2

For all nonnegative integer n, the Euler–Fibonacci numbers \(E_{n,F}\) are defined by

$$ E_{n,F}=-\sum_{k=0}^{n} \binom{n}{k}_{F}E_{k,F}, $$
(8)

where \(E_{0,F}=1\).

The first few Euler–Fibonacci numbers are as follows:

$$ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} E_{0,F} & E_{1,F} & E_{2,F} & E_{3,F} & E_{4,F} & E_{5,F} \\ 1 & -\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} & \frac{11}{8} & \frac{17}{16} \end{array} $$

Theorem 3

The exponential generating function of Euler–Fibonacci numbers \(E_{n,F}\) is defined by

$$ \sum_{n=0}^{\infty } E_{n,F} \frac{t^{n}}{F_{n}!}=\frac{2}{e _{F}^{t}+1}. $$
(9)

Proof

For the proof, we show that

$$ \Biggl( \sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!} \Biggr) \bigl(e_{F}^{t}+1 \bigr) =2. $$

From (2), we have

$$\begin{aligned} \Biggl( \sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!} \Biggr) \Biggl(\sum_{n=0}^{\infty } \frac{t^{n}}{F_{n}!}+1 \Biggr) &= \Biggl(\sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!} \Biggr) \Biggl(2+\sum_{n=1}^{\infty } \frac{t^{n}}{F_{n}!} \Biggr) \\ &= 2\sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!}+\sum_{n=1}^{\infty } \Biggl( \sum_{k=0}^{n-1}\frac{E_{k,F}}{F _{k}!} \frac{1}{F_{n-k}!} \Biggr) t^{n} \\ &= 2\sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!}+\sum_{n=1}^{\infty } \Biggl( \sum_{k=0}^{n}\binom{n}{k}_{F}E _{k,F}-E_{n,F} \Biggr) \frac{t^{n}}{F_{n}!} \\ &=2\sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!}+\sum_{n=1}^{\infty } ( -2E_{n,F} ) \frac{t^{n}}{F_{n}!} \\ &= 2, \end{aligned}$$

which is the desired result. □

Definition 3

The Euler–Fibonacci polynomials \(E_{n,F} ( x )\) are defined by

$$ E_{n,F} (x )=\sum_{k=0}^{n} \binom{n}{k}_{F}E_{k,F} x^{n-k}, $$

where \(E_{0,F} ( x ) =1\) and \(E_{n,F}\) are the nth Euler–Fibonacci numbers.

The first few Euler–Fibonacci polynomials are as follows:

$$\begin{aligned}& E_{0,F} ( x ) = 1 , \\& E_{1,F} ( x ) = x-\frac{1}{2} , \\& E_{2,F} ( x ) = x^{2}-\frac{x}{2}-\frac{1}{4} , \\& E_{3,F} ( x ) = x^{3}-x^{2}-\frac{x}{2}- \frac{1}{4} , \\& E_{4,F} ( x ) = x^{4}-\frac{3}{2}x^{3}- \frac{3}{2}x^{2}- \frac{3}{4}x+\frac{11}{8} , \\& E_{5,F} ( x ) = x^{5}-\frac{5}{2}x^{4}- \frac{15}{4}x^{3}- \frac{15}{4}x^{2}+ \frac{55}{8}x+\frac{17}{16} . \end{aligned}$$

Theorem 4

The exponential generating function of Euler–Fibonacci polynomials \(E_{n,F} ( x )\) is defined by

$$ \sum_{n=0}^{\infty }E_{n,F} ( x ) \frac{t^{n}}{F _{n}!}=\frac{2e_{F}^{xt}}{ ( e_{F}^{t}+1 ) } . $$
(10)

Proof

By virtue of the definition of the Euler–Fibonacci polynomials, we get

$$\begin{aligned} \frac{2e_{F}^{xt}}{ ( e_{F}^{t}+1 ) } &= \sum_{n=0} ^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!}\sum_{n=0}^{\infty }x^{n} \frac{t ^{n}}{F_{n}!} \\ &= \sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n}\frac{E _{k,F}}{F_{k}!} \frac{x^{n-k}}{F_{n-k}!} \Biggr) t^{n} \\ &= \sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n} \binom{n}{k}_{F}E_{k,F} x^{n-k} \Biggr) \frac{t^{n}}{F_{n}!} \\ &= \sum_{n=0}^{\infty }E_{n,F} ( x ) \frac{t^{n}}{F _{n}!}. \end{aligned}$$

 □

In the following proposition, we will give a relationship between the Bernoulli F-polynomials \(B_{n,F} ( x )\) and the Euler–Fibonacci polynomials \(E_{n,F} ( x )\).

Proposition 1

Let n be a nonnegative integer,

$$ B_{n,F} ( x ) =\frac{x^{n+1}-E_{n+1,F} ( x ) }{F _{n+1}}+\sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F} \bigl(x ^{k+1}-E_{k+1,F} ( x ) \bigr). $$
(11)

Proof

For the proof, we use the exponential generating functions for the Bernoulli F-polynomial and the Euler–Fibonacci polynomials. We have

$$\begin{aligned} &\sum_{n=0}^{\infty }B_{n,F} ( x ) \frac{t^{n}}{F _{n}!} \\ &\quad =\frac{e_{F}^{xt} ( e_{F}^{t}-1 ) }{t} \\ &\quad =\frac{ ( e_{F}^{t}+1 ) }{t} \biggl( e_{F}^{xt}- \frac{2e _{F}^{xt}}{e_{F}^{t}+1} \biggr) \\ &\quad = \Biggl( \sum_{n=0}^{\infty } \frac{t^{n}}{F_{n}!}+1 \Biggr) \Biggl(\sum_{n=0}^{\infty } \frac{x^{n}t^{n-1}}{F_{n}!}-\sum_{n=0}^{\infty }E_{n,F} ( x ) \frac{t^{n-1}}{F_{n}!} \Biggr) \\ &\quad = \Biggl( \sum_{n=0}^{\infty } \frac{t^{n}}{F_{n}!}+1 \Biggr) \Biggl(\sum_{n=0}^{\infty } \bigl( x^{n+1}-E_{n+1,F} ( x ) \bigr)\frac{t^{n}}{F_{n+1}!} \Biggr) \\ &\quad =\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n}\frac{x ^{k+1}-E_{k+1,F} ( x ) }{F_{k+1}!} \frac{1}{F_{n-k}!} \Biggr)t ^{n}+\sum_{n=0}^{\infty } \biggl( \frac{x^{n+1}-E_{n+1,F} (x ) }{F_{n+1}} \biggr) \frac{t ^{n}}{F_{n}!} \\ &\quad =\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n}\frac{1}{F _{k+1}} \binom{n}{k}_{F} \bigl( x^{k+1}-E_{k+1,F} ( x ) \bigr) \Biggr)t^{n}+\sum_{n=0}^{\infty } \biggl( \frac{x^{n+1}-E _{n+1,F} (x ) }{F_{n+1}} \biggr) \frac{t^{n}}{F_{n}!} \\ &\quad =\sum_{n=0}^{\infty } \Biggl( \frac{x^{n+1}-E_{n+1,F} ( x ) }{F_{n+1}}+\sum_{k=0}^{n} \frac{1}{F_{k+1}} \binom{n}{k}_{F} \bigl(x^{k+1}-E_{k+1,F} ( x ) \bigr) \Biggr) \frac{t^{n}}{F_{n}!}. \end{aligned}$$

Comparing the coefficients of \(t^{n}/F_{n}!\) on both sides of the above equations we arrive at the desired result. □

Also,

$$ B_{n,F} ( x ) =2 \biggl( \frac{x^{n+1}-E_{n+1,F} ( x ) }{F_{n+1}} \biggr) +\sum _{k=0}^{n-1} \frac{1}{F_{k+1}}\binom{n}{k}_{F} \bigl( x^{k+1}-E_{k+1,F} ( x ) \bigr). $$
(12)

For example, if we take \(n=2\) in Proposition 1, we have

$$\begin{aligned} B_{2,F} ( x ) &=\frac{x^{3}-E_{3,F} ( x ) }{F _{3}}+\sum_{k=0}^{2} \frac{1}{F_{k+1}}\binom{2}{k}_{F} \bigl(x ^{k+1}-E_{k+1,F} ( x ) \bigr) \\ &=\frac{1}{2} \biggl( x^{2}+\frac{x}{2}- \frac{1}{4} \biggr) +x- \biggl( x-\frac{1}{2} \biggr) +x^{2}- \biggl( x^{2}-\frac{x}{2}-\frac{1}{4} \biggr) \\ &\quad {} +\frac{1}{2} \biggl( x^{3}- \biggl( x^{3}-x^{2}+\frac{x}{2}+\frac{1}{4} \biggr) \biggr) \\ &=x^{2}+x+\frac{1}{2}. \end{aligned}$$

Proposition 2

Let \(E_{n,F}\) be the nth Euler–Fibonacci number. Then we have

$$ \sum_{k=0}^{n}\binom{n}{k}_{F}B_{k,F} (x )E_{n-k,F}= \sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F}E_{n-k,F} ( x ). $$
(13)

Proof

We have

$$\begin{aligned}& \begin{aligned}[b] \Biggl(\sum_{n=0}^{\infty }E_{n,F} ( x ) \frac{t ^{n}}{F_{n}!} \Biggr) \biggl( \frac{e_{F}^{t}-1}{t} \biggr) &= \Biggl( \sum_{n=0}^{\infty }E_{n,F} ( x ) \frac{t^{n}}{F_{n}!} \Biggr) \Biggl(\sum_{n=1}^{\infty } \frac{t^{n-1}}{F_{n}!} \Biggr) \\ &=\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n}\frac{1}{F _{k+1}!}\frac{E_{n-k,F} ( x ) }{F_{n-k}!} \Biggr) t^{n} \\ &=\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n}\frac{1}{F _{k+1}}\binom{n}{k}_{F}E_{n-k,F} ( x ) \Biggr) \frac{t ^{n}}{F_{n}!} , \end{aligned} \end{aligned}$$
(14)
$$\begin{aligned}& \begin{aligned}[b] \Biggl(\sum_{n=0}^{\infty }E_{n,F} ( x ) \frac{t ^{n}}{F_{n}!} \Biggr) \biggl( \frac{e_{F}^{t}-1}{t} \biggr) &= \Biggl( \sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!} \Biggr) \Biggl(\sum_{n=0}^{\infty }x^{n} \frac{t^{n}}{F_{n}!} \Biggr) \Biggl(\sum_{n=1}^{\infty } \frac{t^{n-1}}{F_{n}!} \Biggr) \\ &= \Biggl( \sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!} \Biggr) \Biggl( \sum_{n=0}^{\infty } \Biggl( \sum_{k=0}^{n}\frac{1}{F _{k+1}!} \frac{x^{n-k}}{F_{n-k}!} \Biggr) t^{n} \Biggr) \\ &=\sum_{n=0}^{\infty }E_{n,F} \frac{t^{n}}{F_{n}!}\sum_{n=0}^{\infty }B_{n,F} ( x ) \frac{t^{n}}{F_{n}!} \\ &=\sum_{n=0}^{\infty } \Biggl( \sum _{k=0}^{n} \binom{n}{k}_{F}B_{k,F} ( x ) E_{n-k,F} \Biggr) \frac{t ^{n}}{F_{n}!} . \end{aligned} \end{aligned}$$
(15)

From (14) and (15), we get

$$ \sum_{k=0}^{n}\binom{n}{k}_{F}B_{k,F} ( x )E_{n-k,F}= \sum_{k=0}^{n} \frac{1}{F_{k+1}}\binom{n}{k}_{F}E_{n-k,F} ( x ). $$

 □

For example

$$\begin{aligned} \sum_{k=0}^{2}\binom{2}{k}_{F}B_{k,F} ( x ) E_{2-k,F} &=-\frac{1}{4}+ ( x+1 ) \biggl( -\frac{1}{2} \biggr) + \biggl( x^{2}+x+\frac{1}{2} \biggr) 1 \\ &=x^{2}+\frac{1}{2}x-\frac{1}{4} \end{aligned}$$

and

$$\begin{aligned} \sum_{k=0}^{2}\frac{1}{F_{k+1}} \binom{2}{k}_{F}E_{2-k,F} (x ) &=x^{2}- \frac{x}{2}-\frac{1}{4}+x-\frac{1}{2}+\frac{1}{2} \\ &=x^{2}+\frac{1}{2}x-\frac{1}{4}. \end{aligned}$$

4 The Bernoulli–Fibonacci numbers and the Bernoulli–Fibonacci polynomials

In [20], the author defined the nth Bernoulli–Fibonacci numbers and the Bernoulli–Fibonacci polynomials. For all nonnegative integers n, the nth Bernoulli–Fibonacci polynomials \(B_{n}^{F} (x )\) are given with the exponential generating function as follows:

$$ \sum_{n=0}^{\infty }B_{n}^{F} ( x ) \frac{t^{n}}{F _{n}!}=\frac{te_{F}^{tx}}{e_{F}^{t}+1}, $$
(16)

where \(B_{n}^{F} ( 0 )=B_{n}^{F}\).

Let the nth Bernoulli–Fibonacci number be \(B_{n}^{F} (0 )=B _{n}^{F}\), its exponential generating function is

$$ \sum_{n=0}^{\infty }B_{n}^{F} \frac{t^{n}}{F_{n}!}=\frac{t}{e _{F}^{t}+1}. $$
(17)

Proposition 3

([20])

Let the nth Bernoulli–Fibonacci numbers be \(B_{n}^{F}\) having defined \(B_{0}^{F}=1\) and

$$ B_{n}^{F}=-\sum_{k=0}^{n} \frac{1}{F_{n-k+1}}\binom{n}{k}_{F}B _{k}^{F}. $$
(18)

The first few Bernoulli–Fibonacci numbers are as follows:

$$ \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} B_{0}^{F} & B_{1}^{F} & B_{2}^{F} & B_{3}^{F} & B_{4}^{F} & B_{5}^{F} & B_{6}^{F} & B_{7}^{F} \\ 1 & -1 & \frac{1}{2} & -\frac{1}{3} & \frac{3}{10} & -\frac{5}{8} & \frac{101}{39} & -\frac{323}{21} \end{array} $$

Proposition 4

([20])

The recurrence formula of the nth Bernoulli–Fibonacci polynomials is

$$ B_{n}^{F} ( x ) =\sum_{k=0}^{n} \binom{n}{k}_{F}B _{k}^{F}x^{n-k}. $$
(19)

The first few Bernoulli–Fibonacci polynomials are as follows:

$$\begin{aligned}& B_{0}^{F} ( x ) =1, \\& B_{1}^{F} ( x ) =x+1, \\& B_{2}^{F} ( x ) =x^{2}-x+\frac{1}{2}, \\& B_{3}^{F} ( x ) =x^{3}-2x^{2}+x- \frac{1}{3}, \\& B_{4}^{F} ( x ) = x^{4}-3x^{3}+3x^{2}-x+ \frac{3}{10} , \\& B_{5}^{F} ( x ) =x^{5}-5x^{4}+ \frac{15}{2}x^{3}-5x^{2}+ \frac{3}{2}x- \frac{5}{8}. \end{aligned}$$

Now, we give the relationship of the first few Bernoulli F-polynomials \(B_{n,F} ( x ) \) and Bernoulli–Fibonacci polynomials \(B_{n}^{F} (x ) \) and the classical Bernoulli polynomials \(B_{n} (x ) \) with graphics in Fig. 1.

Figure 1
figure 1

Graphs of \(B_{n,F} ( x )\), \(B_{n}^{F} ( x )\) and \(B_{n} ( x )\) for \(n=2,3,4,5\)

5 Fibo–Bernoulli matrices

In this section, we define an interesting Fibo–Bernoulli matrix by using the Bernoulli F-polynomials. Then we obtain a factorization of the Fibo–Bernoulli matrix by using a generalized Fibo–Pascal matrix. Moreover, we obtain the inverse of the Fibo–Bernoulli matrix. We define the Fibo–Euler matrix, the Fibo–Euler polynomial matrix and their inverses. Also, we show a relationship of the Fibo–Bernoulli matrix, Fibo–Euler matrix and Fibo–Euler polynomial matrix.

Definition 4

([5])

The generalized Fibo–Pascal matrix \(U_{n+1} [ x ] = ( U_{n+1} ( x;i,j ) ) \) is defined by

$$ U_{n+1} ( x;i,j ) = \textstyle\begin{cases} \binom{i}{j}_{F} x^{i-j} & \text{if }i\geqslant j, \\ 0 & \text{otherwise}. \end{cases} $$
(20)

Example 1

We have

U 6 [x]= [ 1 0 0 0 0 0 x 1 0 0 0 0 x 2 x 1 0 0 0 x 3 2 x 2 2 x 1 0 0 x 4 3 x 3 6 x 2 3 x 1 0 x 5 5 x 4 15 x 3 15 x 2 5 x 1 ] .

Definition 5

([5])

For \(n\geq 2\), the inverse of the generalized Fibo–Pascal matrix \(V ( F ) = ( v_{ij} )\) is defined by

$$ v_{ij}= \textstyle\begin{cases} b_{i-j+1}\binom{i}{j}_{F} x^{i-j} & \text{if } i\geq j, \\ 0 & \text{otherwise}, \end{cases} $$
(21)

where \(b_{1}=1\) and \(b_{n}=-\sum_{k=1}^{n-1}b_{k}\binom{n}{k} _{F}\).

Example 2

For \(n=5\), the inverse of the generalized Fibo–Pascal matrix \(V ( F ) \) is as follows:

V(F)= [ 1 0 0 0 0 0 x 1 0 0 0 0 0 x 1 0 0 0 x 3 0 2 x 1 0 0 x 4 3 x 3 0 3 x 1 0 6 x 5 5 x 4 15 x 3 0 5 x 1 ] .

Definition 6

Let \(B_{n,F} ( x )\) be the nth Bernoulli’s F-polynomial. \((n+1 ) \times ( n+1 ) \); the Fibo–Bernoulli matrix \(\mathcal{B} ( x,F ) = [ b _{ij} ( x,F ) ] \) is defined by

$$ b_{ij} ( x,F ) = \textstyle\begin{cases} \binom{i}{j}_{F} B_{i-j,F} ( x ) & \text{if } i\geq j, \\ 0 & \text{otherwise}, \end{cases} $$
(22)

where \(0\leq i,j\leq n\).

For \(n=3\), the Fibo–Bernoulli matrix is as follows:

B(x,F)= [ 1 0 0 0 x + 1 1 0 0 x 2 + x + 1 2 x + 1 1 0 x 3 + 2 x 2 + x + 1 3 2 x 2 + 2 x + 1 2 x + 2 1 ] .

Now, we define a special matrix by using the Fibonomial coefficient. Then we obtain the factorization Fibo–Bernoulli matrix by using the generalized Fibo–Pascal matrix.

Definition 7

Let the nth Fibonacci numbers be \(F_{n}\). For \(1 \leq i,j \leq n+1\), the \(W(F)= [ w_{ij} ] \) matrix is defined as follows:

$$ w_{ij}= \textstyle\begin{cases} \frac{1}{F_{i-j+1}} \binom{i}{j}_{F} & \text{if } i\geqslant j, \\ 0 & \text{otherwise}. \end{cases} $$
(23)

For \(n=5\), the \(W(F)\) matrix is

W(F)= [ 1 0 0 0 0 0 1 1 0 0 0 0 1 2 1 1 0 0 0 1 3 1 2 1 0 0 1 5 1 3 3 1 0 1 8 1 5 15 2 5 1 ] .

Proposition 5

([4])

We have

$$ \sum_{k=0}^{n}\binom{n}{k}_{F}B_{n-k}^{F} \frac{1}{F_{k+1}}=F_{n}! \delta _{n,0} . $$
(24)

Theorem 5

Let \(B_{n}^{F}\) be the nth Bernoulli–Fibonacci numbers. \(T ( F ) = [ t_{ij} ] _{ ( n+1 ) \times ( n+1 ) }\), the inverse of the \(W(F)\) matrix, is

$$ t_{ij}= \textstyle\begin{cases} \binom{i}{j}_{F} B_{i-j}^{F} & \textit{if } i\geqslant j, \\ 0 & \textit{otherwise}. \end{cases} $$
(25)

Proof

We have

$$\begin{aligned} \bigl( T ( F ) W(F) \bigr) _{ij} &=\sum_{k=j}^{i}t_{ik} w_{kj} \\ &=\sum_{k=j}^{i}\binom{i}{k}_{F}B_{i-k}^{F} \frac{1}{F_{k-j+1}} \binom{k}{j}_{F} \\ &=\sum_{k=j}^{i}\binom{i}{j}_{F} \binom{i-j}{k-j}_{F}B_{i-k}^{F} \frac{1}{F _{k-j+1}} \\ &=\binom{i}{j}_{F}\sum_{k=0}^{i-j} \binom{i-j}{k}_{F}B_{i-j-k}^{F} \frac{1}{F_{k+1}} \\ &=\binom{i}{j}_{F}F_{i-j}! \delta _{i-j,0} . \end{aligned}$$

Hence, \(( T ( F ) W(F) ) _{ij}=1\) for \(i=j\) and \((T ( F ) W(F) ) _{ij}=0\) for \(i\neq j\). □

For \(n=5\), \(T ( F )\) is as follows:

T(F)= [ 1 0 0 0 0 0 1 1 0 0 0 0 1 2 1 1 0 0 0 1 3 1 2 1 0 0 3 10 1 3 3 1 0 5 8 3 2 5 15 2 5 1 ] .

Theorem 6

Let \(\mathcal{B} ( x,F ) \) be the Fibo–Bernoulli matrix and \(U_{n+1} [ x ] \) be a generalized Fibo–Pascal matrix, then

$$ \mathcal{B} ( x,F ) =U_{n+1} [ x ] W(F). $$

Proof

We have

$$\begin{aligned} \bigl( U [ x ] \cdot W(F) \bigr) _{ij} &=\sum _{k=j} ^{i}u_{ik}w_{kj} \\ &=\sum_{k=j}^{i}\binom{i}{k}_{F}x^{i-k} \frac{1}{F_{k-j+1}} \binom{k}{j}_{F} \\ &=\binom{i}{j}_{F}\sum_{k=j}^{i} \frac{1}{F_{k-j+1}} \binom{i-j}{k-j}_{F}x^{i-k} \\ &=\binom{i}{j}_{F}\sum_{k=0}^{i-j} \frac{1}{F_{k+1}} \binom{i-j}{k}_{F}x^{i-j-k} \\ &=\binom{i}{j}_{F}B_{i-j,F} ( x ) \\ &= \bigl[ \mathcal{B} ( x,F ) \bigr] _{ij}. \end{aligned}$$

 □

Example 3

For \(n=3\), we have

U n + 1 [ x ] W ( F ) = [ 1 0 0 0 x 1 0 0 x 2 x 1 0 x 3 2 x 2 2 x 1 ] × [ 1 0 0 0 1 1 0 0 1 2 1 1 0 1 3 1 2 1 ] = [ 1 0 0 0 x + 1 1 0 0 x 2 + x + 1 2 x + 1 1 0 x 3 + 2 x 2 + x + 1 3 2 x 2 + 2 x + 1 2 x + 2 1 ] = B ( x , F ) .

Theorem 7

Let \(\mathcal{D} ( x,F ) = [ d_{ij} ] \) be the \((n+1 ) \times ( n+1 ) \) matrix defined by

$$ d_{ij}= \textstyle\begin{cases} \binom{i}{j}_{F} \sum_{k=0}^{i-j}\binom{i-j}{k}_{F} B_{i-j-k} ^{F} b_{k+1} x^{k} & \textit{if } i\geqslant j, \\ 0 & \textit{otherwise}. \end{cases} $$
(26)

Then \(\mathcal{D} ( x,F ) \) is the inverse of the Fibo–Bernoulli matrix. Thus,

$$ \mathcal{B}^{-1} ( x,F ) =\mathcal{D} ( x,F ). $$

Proof

Let \(U_{n+1} [ x ] \) be a generalized Fibo–Pascal matrix. Using the factorization of \(\mathcal{B} ( x,F )\) in Theorem 6

$$ \mathcal{B}^{-1} ( x,F ) =W^{-1}(F) U_{n+1}^{-1} [ x ]=T ( F ) V ( F ) $$

and the inverse of the generalized Fibo–Pascal matrix in (21), we obtain

$$\begin{aligned} \bigl[ T ( F ) V ( F ) \bigr] _{ij} &=\sum _{k=j}^{i} \binom{i}{k}_{F} B_{i-k}^{F}\binom{k}{j}_{F}b_{k-j+1} x ^{k-j} \\ &=\binom{i}{j}_{F} \sum_{k=j}^{i} \binom{i-j}{k-j}_{F} B_{i-k} ^{F} b_{k-j+1} x^{k-j} \\ &=\binom{i}{j}_{F} \sum_{k=0}^{i-j} \binom{i-j}{k}_{F}B_{i-j-k}^{F} b_{k+1} x^{k-j} \\ &= \bigl[ \mathcal{D} ( x,F ) \bigr] _{ij} . \end{aligned}$$

 □

Example 4

For \(n=4\), \(\mathcal{D} ( x,F )\) is as follows:

D ( x , F ) = [ 1 0 0 0 0 1 1 0 0 0 1 2 1 1 0 0 1 3 1 2 1 0 3 10 1 3 3 1 ] × [ 1 0 0 0 0 x 1 0 0 0 0 x 1 0 0 x 3 0 2 x 1 0 x 4 3 x 3 0 3 x 1 ] = [ 1 0 0 0 0 x 1 1 0 0 0 x + 1 2 x 1 1 0 0 x 3 x 1 3 2 x + 1 2 x 2 1 0 x 4 3 x 3 + x + 3 10 3 x 3 3 x 1 6 x + 3 3 x 3 1 ] .

Definition 8

Let \(E_{n,F}\) be the Euler–Fibonacci number. For \(1 \leq i,j \leq n+1\), then the Fibo–Euler matrix \(E_{F} = ( e_{F} ) _{ij}\) is defined as follows:

$$ ( e_{F} ) _{ij}= \textstyle\begin{cases} \binom{i}{j}_{F} E_{i-j,F} & \text{if } i\geqslant j, \\ 0 & \text{otherwise}. \end{cases} $$
(27)

Example 5

For \(n=3\), the Fibo–Euler matrix is

E F = [ 1 0 0 0 1 2 1 0 0 1 4 1 2 1 0 1 4 1 2 1 1 ] .

Definition 9

([5])

The Fibo–Pascal matrix \(U_{n+1,F}= [ u_{i,j} ] _{ (n+1 ) \times ( n+1 ) }\) is defined by

$$ u_{i,j}= \textstyle\begin{cases} \binom{i}{j}_{F} & \text{if } i\geqslant j, \\ 0 & \text{otherwise}. \end{cases} $$

Proposition 6

([16])

Let \(E_{n,F}\) be the Euler–Fibonacci number

$$ \sum_{k=0}^{n}\binom{n}{k}_{F}E_{n-k,F}+E_{n,F}=2 \delta _{0,n}. $$
(28)

Theorem 8

Let \(U_{n+1,F}= [ u_{i,j} ] \) be the \(( n+1 ) \times (n+1 )\) the Fibo–Pascal matrix, \(I_{n+1}\) be the identity matrix, and \(E_{F}\) be the Fibo–Euler matrix, then we get

$$ \frac{1}{2} ( U_{n+1,F}+I_{n+1} ) =E_{F}^{-1}. $$

Proof

We have

$$\begin{aligned} \biggl( E_{F}\frac{1}{2} ( U_{n+1,F}+I_{n+1} ) \biggr) _{ij} &=\frac{1}{2} ( E_{F} U_{n+1,F}+E_{F} ) _{ij} \\ &=\sum_{k=j}^{i}\binom{i}{k}_{F}E_{i-k,F} \frac{1}{2} \binom{k}{j}_{F}+\binom{i}{j}_{F}E_{i-j,F} \\ &=\frac{1}{2}\binom{i}{j}_{F}\sum _{k=j}^{i}\binom{i-j}{k-j} _{F}E_{i-k,F}+ \binom{i}{j}_{F}E_{i-j,F} \\ &=\frac{1}{2}\binom{i}{j}_{F} \Biggl[ \sum _{k=0}^{i-j} \binom{i-j}{k}_{F}E_{i-j-k,F}+E_{i-j,F} \Biggr] \\ &=\frac{1}{2}\binom{i}{j}_{F}2 \delta _{0,i-j} \\ &=\binom{i}{j}_{F} \delta _{0,i-j}. \end{aligned}$$

Thus, for \(i=j\), \(\binom{i}{j}_{F} \delta _{0,i-j}=1\) and for \(i\neq j\) \(\binom{i}{j}_{F} \delta _{0,i-j}=0\). Hence,

$$ \frac{1}{2} ( U_{n+1,F}+I_{n+1} ) =E_{F}^{-1}. $$

 □

Definition 10

Let \(E_{n,F}\) be the Euler–Fibonacci number. For \(1 \leq i,j \leq n+1\), then the Fibo–Euler polynomial matrix \(E_{F} ( x ) = [ ( \varepsilon _{F} ) _{ij} ] \) is defined as follows:

$$ ( \varepsilon _{F} ) _{ij}= \textstyle\begin{cases} \binom{i}{j}_{F} E_{i-j,F} x^{i-j} & \text{if }i\geqslant j, \\ 0 & \text{otherwise}. \end{cases} $$
(29)

Example 6

\(5\times 5\) For \(n=4\), the Fibo–Euler polynomial matrix is as follows:

E F (x)= [ 1 0 0 0 0 x 2 1 0 0 0 x 2 4 x 2 1 0 0 x 3 4 x 2 2 x 1 0 5 x 4 8 3 x 3 4 3 x 2 2 3 x 2 1 ] .

Theorem 9

Let \(H_{F} ( x ) = [ ( h_{F} ) _{ij} ]\) be the inverse of the Fibo–Euler polynomial matrix, then we have

$$ H_{F} (x )=\frac{1}{2} \bigl( U_{n+1} [ x ] +I _{n+1} \bigr), $$
(30)

where \(U_{n+1,F}\) is \({ ( n+1 ) \times ( n+1 ) }\) Fibo–Pascal matrix and \(I_{n+1}\) is the identity matrix.

Proof

$$\begin{aligned} \bigl( E_{F} ( x ) \bigl( U_{n+1} [ x ]+I_{n+1} \bigr) \bigr) _{ij} &= \sum_{k=j}^{i} \binom{i}{k}_{F}E_{i-k,F} x^{i-k} \binom{k}{j}_{F}x^{k-j}+ \binom{i}{j}_{F}E_{i-j,F} x^{i-j} \\ &= \binom{i}{j}_{F}\sum_{k=j}^{i} \binom{i-j}{k-j}_{F}E_{i-k,F} x^{i-j}+ \binom{i}{j}_{F}E_{i-j,F} x^{i-j} \\ &=\binom{i}{j}_{F} x^{i-j} \Biggl[ \sum _{k=0}^{i-j} \binom{i-j}{k}_{F}E_{i-j-k,F}+E_{i-j,F} \Biggr] \\ &=2 \binom{i}{j}_{F} x^{i-j} \delta _{0,i-j} \end{aligned}$$

for \(i=j\) \(\binom{i}{j}_{F}x^{i-j} \delta _{0,i-j}=1\) and for \(i\neq j\) \(\binom{i}{j}_{F}x^{i-j} \delta _{0,i-j}=0\). Thus the proof is completed. □

Now, we obtain the Fibo–Bernoulli matrix factorization by using the inverse of the Fibo–Euler polynomial matrix.

Theorem 10

Let \(\mathcal{B} ( x,F )\) be \({ ( n+1 ) \times ( n+1 ) }\) the Fibo–Bernoulli matrix, then we have

$$ \mathcal{B} ( x,F ) = \bigl[ 2H_{F} ( x ) -I _{n+1} \bigr] W(F). $$
(31)

Proof

We have

$$ \bigl( \bigl[ 2H_{F} ( x ) -I_{n+1} \bigr] W(F) \bigr) _{ij}=\sum_{k=j}^{i} \biggl( 2 \frac{1}{2}\binom{i}{k}_{F}x ^{i-k}- \delta _{ik} \biggr) \binom{k}{j}_{F}\frac{1}{F_{k-j+1}} $$

for \(j< k< i\) \(\delta _{ik}=0\), then we get

$$\begin{aligned} \bigl( \bigl[ 2H_{F} ( x ) -I_{n+1} \bigr] W(F) \bigr) _{ij} &=\sum_{k=j}^{i} \binom{i}{k}_{F}x^{i-k}\binom{k}{j}_{F} \frac{1}{F_{k-j+1}} \\ &=\binom{i}{j}\sum_{k=j}^{i} \binom{i-j}{k-j}_{F} \frac{1}{F _{k-j+1}}x^{i-k} \\ &=\binom{i}{j}\sum_{k=0}^{i-j} \binom{i-j}{k}_{F}\frac{1}{F _{k+1}}x^{i-j-k} \\ &=\binom{i}{j}_{F}B_{i-j,F} ( x ) \\ &= \bigl[ \mathcal{B} ( x,F ) \bigr] _{ij} \end{aligned}$$

and

$$ \bigl( \bigl[ 2H_{F} ( x ) - \delta \bigr] W(F) \bigr) _{ij}=0 $$

for \(i=j=k\) and \(i< k< j\). Thus the proof is completed. □