1 Introduction

This article is concerned with the following quasilinear Schrödinger equation:

$$ \begin{aligned}-\Delta u+u-\Delta \bigl(u^{2}\bigr)u= \bigl(I_{\alpha }*G(u)\bigr)g(u),\quad x\in { \mathbb{R}}^{N}, \end{aligned} $$
(1.1)

where \(N\geq 3\), \(0<\alpha <N\), \(I_{\alpha }\) is a Riesz potential (see [16]), and \(g: {\mathbb{R}}^{N}\rightarrow {\mathbb{R}}\) satisfies

\((g_{1})\):

\(g\in \mathcal{C}({\mathbb{R}},{\mathbb{R}})\);

\((g_{2})\):

there exists \(C>0\) such that

$$ \bigl\vert G(t) \bigr\vert \leq C \bigl( \vert t \vert ^{\frac{N+\alpha }{N}}+ \vert t \vert ^{\frac{2(N+\alpha )}{N-2}} \bigr); $$
\((g_{3})\):

\(\lim_{t\rightarrow 0}\frac{G(t)}{|t|^{\frac{N+\alpha }{N}}}=0\) and \(\lim_{|t|\rightarrow +\infty } \frac{G(t)}{|t|^{\frac{2(N+\alpha )}{N-2}}}=0\);

\((g_{4})\):

there exists \(s_{0}\in {\mathbb{R}}\) such that \(G(s_{0})>\frac{1}{2}s^{2}_{0}\).

It is well known that the existence of solitary wave solutions for the following quasilinear Schrödinger equation is a hot problem

$$ i\partial _{t} z=-\Delta z+W(x)z-\psi \bigl( \vert z \vert ^{2}\bigr)z-\Delta l\bigl( \vert z \vert ^{2} \bigr)l'\bigl( \vert z \vert ^{2}\bigr)z, $$
(1.2)

where \(z : {\mathbb{R}}\times {\mathbb{R}}^{N}\rightarrow \mathbb{C}\), \(W : {\mathbb{R}}^{N}\rightarrow {\mathbb{R}}\) is a given potential, \(l : {\mathbb{R}}\rightarrow {\mathbb{R}}\) and \(\psi : {\mathbb{R}}^{N}\times {\mathbb{R}}\rightarrow {\mathbb{R}}\) are suitable functions. For various types of l and ψ, the quasilinear equation of the form (1.1) has been derived from models of several physical phenomena. For physical background, the readers can refer to [1, 9, 11, 15] and the references therein. If we set the variable \(z(t,x)=\exp (-iLt)u(x)\), where \(L\in {\mathbb{R}}\) and u is a real function, then so many papers focused on standing wave solutions for (1.2). The readers can refer to [5, 8, 12, 13, 20] and the references therein. As for Choquard type quasilinear Schrödinger equation, there are few papers except for [3, 4, 21]. In [21], a class of quasilinear Choquard equations has been considered via the perturbation method developed by [13], and they showed the existence of positive solution, negative solution, and multiple solutions. Furthermore, the authors [4] established the existence of positive solutions with the periodic potential or bounded potential. In [3], the authors proved the existence of ground state solutions via Jeanjean’s monotonic technique [10].

For the following Choquard equation with a local nonlinear perturbation

$$ \textstyle\begin{cases} -\Delta u+V(x)u=(I_{\alpha }*F(u))f(u)+g(u),\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases} $$

under some suitable conditions on V, the authors proved the existence of ground state solutions without super-linear conditions near infinity or monotonicity properties on f and g in [6].

To our knowledge, there are no articles to prove the existence of ground state solutions for (1.1) with general Choquard type nonlinearity. In this paper, motivated by [3, 4, 6, 21], we consider the existence of ground state solutions with the Berstycki–Lions conditions, which originated from [2]. To prove our results, we use the minimization method developed by Tang [18] to prove the existence of ground state solutions.

Next, the energy functional associated with (1.1) is given by

$$ J(u)=\frac{1}{2} \int _{{\mathbb{R}}^{N}}\bigl(1+2u^{2}\bigr) \vert \nabla u \vert ^{2}+ \frac{1}{2} \int _{{\mathbb{R}}^{N}}u^{2}-\frac{1}{2} \int _{{\mathbb{R}}^{N}}\bigl(I_{\alpha }*G(u)\bigr)G(u). $$

To our aim, if we choose the variable \(u=f(v)\) in [7, 12], then (1.1) reduces to

$$ -\Delta v+f(v)f'(v)=\bigl(I_{\alpha }*G \bigl(f(v)\bigr)\bigr)g\bigl(f(v)\bigr)f'(v),\quad x\in { \mathbb{R}}^{N}, $$
(1.3)

where \(f : [0,+\infty )\rightarrow {\mathbb{R}}\) is given by \(f'(t)=\frac{1}{\sqrt{1+2f^{2}(t)}} \) on \([0,+\infty )\), \(f(0)=0\), and \(f(-t)=f(t)\) on \((-\infty ,0]\). Based on the above facts, if v is a weak solution of (1.3), then \(u=f(v)\) is a weak solution of (1.1). The energy functional J reduces to the following functional:

$$ \varPhi (v)=\frac{1}{2} \int _{{\mathbb{R}}^{N}} \bigl( \vert \nabla v \vert ^{2}+f^{2}(v) \bigr)-\frac{1}{2} \int _{{\mathbb{R}}^{N}}\bigl(I_{\alpha }*G\bigl(f(v)\bigr)\bigr)G \bigl(f(v)\bigr). $$
(1.4)

Before stating our results, we need to define the set \(\mathcal{Q}=\{v\in H^{1}({\mathbb{R}}^{N})\backslash \{0\}: \mathcal{P}(v)=0\} \), where \(\mathcal{P}\) is given in Lemma 2.2. Now, we give our result in the following.

Theorem 1.1

Assume that\((g_{1})\)\((g_{4})\)are satisfied. Then problem (1.1) has a ground state solution\(u=f(v)\)such that\(\varPhi (v)=\inf_{\mathcal{Q}}\varPhi =\inf_{v\in \varTheta }\max_{t>0} \varPhi (v_{t})>0 \), where\(v_{t}=v(x/t)\)and

$$ \varTheta := \biggl\{ v\in H^{1}\bigl({\mathbb{R}}^{N}\bigr): \int _{{\mathbb{R}}^{N}} \biggl[\frac{1}{2}f^{2}(v) - \frac{N+\alpha }{2} \bigl(I_{\alpha }*G\bigl(f(v)\bigr) \bigr)G\bigl(f(v)\bigr) \biggr]< 0 \biggr\} . $$

Notions

  • Let \(H^{1}({\mathbb{R}}^{N})= \{ u\in L^{2}({\mathbb{R}}^{N}) : \nabla u\in L^{2}({\mathbb{R}}^{N}) \} \) with the norm \(\|u\|= (\int _{{\mathbb{R}}^{N}}(|\nabla u|^{2}+u^{2}) )^{ \frac{1}{2}}\).

  • The embedding \(H^{1}({\mathbb{R}}^{N})\hookrightarrow L^{s}({\mathbb{R}}^{N})\) is continuous for \(s\in [2,2^{*}]\) and \(H^{1}_{r}({\mathbb{R}}^{N})\hookrightarrow L^{s}({\mathbb{R}}^{N})\) is compact for \(s\in (2,2^{*})\).

  • \(H^{1}({\mathbb{R}}^{N})\hookrightarrow L^{\frac{2Nq}{N+\alpha }}({ \mathbb{R}}^{N})\) if and only if \(\frac{N+\alpha }{N}\leq q\leq \frac{N-2}{N+\alpha }\) (see [16]).

  • \(L^{p}({\mathbb{R}}^{N})\) denotes the usual Lebesgue space with norms \(\|u\|_{p}= (\int _{{\mathbb{R}}^{N}}|u|^{p} )^{ \frac{1}{p}}\), where \(1\leq p<\infty \).

  • \(\int _{{\mathbb{R}}^{N}}\clubsuit \) denotes \(\int _{{\mathbb{R}}^{N}}\clubsuit \,\mathrm{d}x\) and C possibly denotes the different constants.

2 Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. Next, let us recall some properties of the variables \(f : {\mathbb{R}}\rightarrow {\mathbb{R}}\). These properties have been proved in [7, 12].

Lemma 2.1

([7, 12])

The function\(f(t)\)and its derivative satisfy the following properties:

(1):

\(f(t)/t\rightarrow 1\)as\(t\rightarrow 0\);

(2):

\(f(t)\leq |t|\)for any\(t\in {\mathbb{R}}\);

(3):

\(f(t)\leq 2^{\frac{1}{4}}\sqrt{|t|}\)for all\(t\in {\mathbb{R}}\);

(4):

\(f^{2}(t)/2\leq tf(t)f'(t)\leq f^{2}(t)\)for all\(t\in {\mathbb{R}}\);

(5):

there exists a constant\(C>0\)such that

$$ \bigl\vert f(t) \bigr\vert \geq \textstyle\begin{cases} C \vert t \vert , & \textit{if } \vert t \vert \leq 1, \\ C \vert t \vert ^{\frac{1}{2}},& \textit{if } \vert t \vert \geq 1; \end{cases} $$
(6):

\(|f(t)f'(t)|\leq \frac{1}{\sqrt{2}}\)for all\(t\in {\mathbb{R}}\).

By the standard argument in [16, 19], we have the following Pohozaev type identity.

Lemma 2.2

If\(v\in H^{1}({\mathbb{R}}^{N})\)is a critical point of (1.3), thenvsatisfies

$$ \mathcal{P}(v):=\frac{N-2}{2} \int _{{\mathbb{R}}^{N}} \vert \nabla v \vert ^{2}+ \frac{N}{2} \int _{{\mathbb{R}}^{N}}f^{2}(v)-\frac{N+\alpha }{2} \int _{{ \mathbb{R}}^{N}}\bigl(I_{\alpha }*G\bigl(f(v)\bigr)\bigr)G \bigl(f(v)\bigr)=0. $$
(2.1)

Motivated by [18], by a simple calculation, for any \(t\in [0,1)\cup (1,+\infty )\), one has

$$ \begin{gathered} \beta (t):=\alpha +2-(N+\alpha )t^{N-2}+(N-2)t^{N+\alpha }>0 \quad \text{and}\\ \alpha -(N+\alpha )t^{N}-N\bigl(1-t^{N+\alpha } \bigr)>0. \end{gathered} $$
(2.2)

Lemma 2.3

Assume that\((g_{1})\)\((g_{4})\)hold. Then, for all\(v\in H^{1}({\mathbb{R}}^{N})\)and\(t>0\),

$$ \varPhi (v)\geq \varPhi (v_{t})+\frac{1-t^{N+\alpha }}{N+\alpha } \mathcal{Q}(v) + \frac{\beta (t)}{2(N+\alpha )} \Vert \nabla v \Vert ^{2}_{2}. $$

Proof

From (1.4), we have

$$ \varPhi (v_{t})=\frac{t^{N-2}}{2} \int _{{\mathbb{R}}^{N}} \vert \nabla v \vert ^{2}+ \frac{t^{N}}{2} \int _{{\mathbb{R}}^{N}}f^{2}(v)- \frac{t^{N+\alpha }}{2} \int _{{\mathbb{R}}^{N}}\bigl(I_{\alpha }*G\bigl(f(v)\bigr)\bigr)G \bigl(f(v)\bigr). $$

Thus, by (2.2), we have

$$ \begin{aligned} &\varPhi (v)-\varPhi (v_{t})\\ &\quad =\frac{1-t^{N-2}}{2} \int _{{\mathbb{R}}^{N}} \vert \nabla v \vert ^{2} + \frac{1-t^{N}}{2} \int _{{\mathbb{R}}^{N}}f^{2}(v)- \frac{1-t^{N+\alpha }}{2} \int _{{\mathbb{R}}^{N}}\bigl(I_{\alpha }*G\bigl(f(v)\bigr)\bigr)G \bigl(f(v)\bigr) \\ &\quad =\frac{1-t^{N+\alpha }}{N+\alpha } \mathcal{Q}(v)+ \frac{\alpha +2-(N+\alpha )t^{N-2}+(N-2)t^{N+\alpha } }{2(N+\alpha )} \Vert \nabla v \Vert ^{2}_{2} \\ &\qquad {}+ \frac{\alpha -(N+\alpha )t^{N}-N(1-t^{N+\alpha })}{N+\alpha } \bigl\Vert f(v) \bigr\Vert ^{2}_{2} \\ &\quad \geq \frac{1-t^{N+\alpha }}{N+\alpha } \mathcal{Q}(v) + \frac{\beta (t)}{2(N+\alpha )} \Vert \nabla v \Vert ^{2}_{2}. \end{aligned} $$

The proof is completed. □

Corollary 2.4

Assume that\((g_{1})\)\((g_{4})\)hold. Then, for any\(v\in \mathcal{Q}\), \(\varPhi (v)=\max_{t>0}\varPhi (v_{t})\).

Lemma 2.5

Assume that\((g_{1})\)\((g_{4})\)hold. Then, for any\(\varTheta \neq \emptyset \)and the set

$$ \bigl\{ v\in H^{1}\bigl({\mathbb{R}}^{N}\bigr)\backslash \{0 \} : \mathcal{P}(v) \leq 0 \bigr\} \subset \varTheta . $$

Proof

By using \((g_{4})\) and the method in [17] and [18], it follows that \(\varTheta \neq \emptyset \). Next, for any \(v\in H^{1}({\mathbb{R}}^{N})\backslash \{0\}\), it follows from \(\mathcal{P}(v)\leq 0\) that

$$ \frac{N}{2} \int _{{\mathbb{R}}^{N}}f^{2}(v)-\frac{N+\alpha }{2} \int _{{ \mathbb{R}}^{N}}\bigl(I_{\alpha }*G\bigl(f(v)\bigr)\bigr)G \bigl(f(v)\bigr) \leq -\frac{N-2}{2} \int _{{ \mathbb{R}}^{N}} \vert \nabla v \vert ^{2}< 0, $$

which shows that \(v\in \varTheta \). The proof is completed. □

Lemma 2.6

Assume that\((g_{1})\)\((g_{4})\)hold. Then, for any\(v\in \varTheta \), there exists unique\(t_{v}>0\)such that\(v_{t_{v}}\in \mathcal{Q}\).

Proof

Let \(v\in \varTheta \) be fixed. Set \(\varGamma (t):=\varPhi (v_{t}) \). Then it follows from \(\varGamma '(t)=0\) that

$$ \begin{aligned}\frac{N-2}{2}t^{N-3} \int _{{\mathbb{R}}^{N}} \vert \nabla v \vert ^{2} + \frac{N t^{N-1}}{2} \int _{{\mathbb{R}}^{N}}f^{2}(v) - \frac{(N+\alpha )t^{N+\alpha -1}}{2} \int _{{\mathbb{R}}^{N}}(I_{\alpha }*G\bigl(f(v)\bigr)G\bigl(f(v) \bigr)=0. \end{aligned} $$

Then

$$ \frac{N-2}{2}t^{N-2} \int _{{\mathbb{R}}^{N}} \vert \nabla v \vert ^{2} + \frac{N t^{N}}{2} \int _{{\mathbb{R}}^{N}}f^{2}(v) - \frac{(N+\alpha )t^{N+\alpha }}{2} \int _{{\mathbb{R}}^{N}}(I_{\alpha }*G\bigl(f(v)\bigr)G\bigl(f(v) \bigr)=0, $$

which implies that \(\mathcal{P}(v_{t})=0\Leftrightarrow v_{t}\in \mathcal{Q} \). It is easy to check that \(\lim_{t\rightarrow 0}\varGamma (t)=0\), \(\varGamma (t)>0\) for \(t>0\) enough small and \(\varGamma (t)<0\) for t large. Thus \(\max_{t>0}\varGamma (t)\) is achieved at some \(t_{v}>0\) such that \(\varGamma '(t_{v})=0\) and \(v_{t_{v}}\in \mathcal{Q}\).

Next, we will prove the uniqueness. For any given \(v\in \varTheta \), if there exist \(t_{1},t_{2}>0\) such that \(v_{t_{1}},v_{t_{2}}\in \mathcal{Q}\). Thus \(\mathcal{P}(v_{t_{1}})=\mathcal{P} (v_{t_{2}})=0\). Therefore, we have

$$ \begin{aligned}\varPhi (v_{t_{1}})&\geq \varPhi (v_{t_{2}})+ \frac{t^{N}_{1}-t^{N}_{2}}{(N+\alpha )t^{N}_{1}}\mathcal{P} (v_{t_{1}}) +\frac{\beta (t_{2}/t_{1})}{2(N+\alpha )} \Vert \nabla v_{t_{1}} \Vert ^{2}_{2}= \varPhi (v_{t_{2}}) +\frac{\beta (t_{2}/t_{1})}{2(N+\alpha )} \Vert \nabla v_{t_{1}} \Vert ^{2}_{2} \end{aligned} $$

and

$$ \begin{aligned}\varPhi (v_{t_{2}})&\geq \varPhi (v_{t_{1}})+ \frac{t^{N}_{2}-t^{N}_{1}}{(N+\alpha )t^{N}_{2}}\mathcal{P} (v_{t_{2}}) +\frac{\beta (t_{1}/t_{2})}{2(N+\alpha )} \Vert \nabla v_{t_{2}} \Vert ^{2}_{2}= \varPhi (v_{t_{1}}) +\frac{\beta (t_{1}/t_{2})}{2(N+\alpha )} \Vert \nabla v_{t_{2}} \Vert ^{2}_{2}, \end{aligned} $$

which shows that \(t_{1}=t_{2}\). Thus \(t_{v}>0\) is unique for \(v\in \mathcal{Q}\). This completes the proof. □

Lemma 2.7

Assume that\((g_{1})\)\((g_{3})\)hold, then\(\mathcal{Q}\neq \emptyset \)and

$$ \inf_{\mathcal{M}}\varPhi :=c=\inf_{v\in \varTheta }\max _{t>0}\varPhi (v_{t}). $$

Proof

This result is a consequence of Corollary 2.4, Lemma 2.5, and Lemma 2.6. The proof is completed. □

By a standard argument in [19], we can get the following Brezis–Lieb lemma.

Lemma 2.8

Assume that\((g_{1})\)\((g_{4})\)hold. If\(v_{n}\rightharpoonup v_{0}\)in\(H^{1}({\mathbb{R}}^{N})\), then

$$ \varPhi (v_{n})=\varPhi (v_{0})+\varPhi (v_{n}-v_{0})+o_{n}(1) $$

and

$$ \mathcal{P}(v_{n})=\mathcal{P}(v_{0})+ \mathcal{P}(v_{n}-v_{0})+o_{n}(1). $$

Lemma 2.9

Assume that\((g_{1})\)\((g_{4})\)hold. Then

  1. (i)

    there exists\(\rho >0\)such that\(\|\nabla v\|_{2}\geq \rho \)for any\(v\in \mathcal{Q}\);

  2. (ii)

    \(c=\inf_{\mathcal{Q}}\varPhi >0\).

Proof

(i) By \((g_{3})\), for any \(\varepsilon >0\), there exists \(C^{1}_{\varepsilon }>0\) such that

$$ \bigl\vert G\bigl(f(v)\bigr) \bigr\vert ^{\frac{2N}{N+\alpha }}\leq \varepsilon \vert v \vert ^{2} +C^{1}_{\varepsilon } \vert s \vert ^{2^{*}}\quad \text{and}\quad \bigl\vert G\bigl(f(v) \bigr) \bigr\vert ^{ \frac{2N}{N+\alpha }} \leq \varepsilon \vert v \vert ^{2}+\varepsilon \vert s \vert ^{2^{*}}+C^{1}_{\varepsilon } \vert s \vert ^{p}, $$
(2.3)

where \(p\in (2,2^{*})\). For any \(v\in \mathcal{Q}\), we have that \(\mathcal{P}(v)=0\). By the Sobolev embedding theorem, the Hardy–Littlewood–Sobolev inequality in [15], (2.3), and \((g_{1})\), we get

$$\begin{aligned} &\frac{(N-2)}{2} \int _{{\mathbb{R}}^{N}} \vert \nabla v \vert ^{2}+ \frac{N}{2} \int _{{\mathbb{R}}^{N}}f^{2}(v) \\ &\quad =\frac{N+\alpha }{2} \int _{{ \mathbb{R}}^{N}}\bigl(I_{\alpha }*G\bigl(f(v)\bigr)\bigr)G \bigl(f(v)\bigr) \\ &\quad \leq C \biggl(\varepsilon \int _{{\mathbb{R}}^{N}} \bigl\vert f(v) \bigr\vert ^{2}+C^{1}_{\varepsilon } \int _{{\mathbb{R}}^{N}} \vert v \vert ^{2^{*}} \biggr) \leq C \biggl( \varepsilon \int _{{\mathbb{R}}^{N}} \bigl\vert f(v) \bigr\vert ^{2}+C^{1}_{\varepsilon } \biggl( \int _{{\mathbb{R}}^{N}} \vert \nabla v \vert ^{2} \biggr)^{2^{*}/2} \biggr), \end{aligned}$$

which shows that there exists \(\rho >0\) such that \(\|\nabla v\|^{2}\geq \rho \) for any \(v\in \mathcal{Q}\).

(ii) For any \(v\in \mathcal{Q}\), from Lemma 2.2, we have

$$ \begin{aligned}\varPhi (v)&=\varPhi (v)-\frac{1}{N+\alpha } \mathcal{P}(v)\geq \frac{\alpha +2}{2(N+\alpha )} \Vert \nabla v \Vert ^{2}_{2}. \end{aligned} $$
(2.4)

This completes the proof. □

Lemma 2.10

Assume that\((g_{1})\)\((g_{3})\)hold. Thencis achieved.

Proof

Let \(\{v_{n}\}\subset \mathcal{Q}\) be a minimizer for c, that is, \(\mathcal{P}(v_{n})=0\) and \(\varPhi (v_{n})\rightarrow c\) as \(n\rightarrow \infty \). By (2.4), one has

$$ c+o_{n}(1)=\varPhi (v_{n})-\frac{1}{N+\alpha } \mathcal{P}(v_{n}) = \frac{\alpha +2}{2(N+\alpha )} \Vert \nabla v_{n} \Vert ^{2}_{2}+ \frac{N}{2(N+\alpha )} \int _{{\mathbb{R}}^{N}}f^{2}(v_{n}), $$

which shows that \(\int _{{\mathbb{R}}^{N}}|\nabla v_{n}|^{2}+\int _{{\mathbb{R}}^{N}}f^{2}(v_{n})\) is bounded and thus \(\{v_{n}\}\) is bounded in \(D^{1,2}({\mathbb{R}}^{N})\). By the Sobolev inequality, Lemma 2.1-(5), it follows that

$$ \int _{ \vert v_{n} \vert \leq 1}v^{2}_{n}\leq \int _{{\mathbb{R}}^{N}}f^{2}(v_{n}) \quad \text{and} \quad \int _{ \vert v_{n} \vert >1}v^{2}_{n}\leq \int _{ \vert v_{n} \vert >1}v^{2^{*}}_{n} \leq C \biggl( \int _{{\mathbb{R}}^{N}} \vert \nabla v_{n} \vert ^{2} \biggr)^{2^{*}/2}. $$

Therefore

$$ \begin{aligned} \int _{{\mathbb{R}}^{N}}v^{2}_{n}= \int _{ \vert v_{n} \vert \leq 1}v^{2}_{n}+ \int _{ \vert v_{n} \vert >1}v^{2}_{n} \leq \int _{{\mathbb{R}}^{N}}f^{2}(v_{n}) +C \biggl( \int _{{\mathbb{R}}^{N}} \vert \nabla v_{n} \vert ^{2} \biggr)^{2^{*}/2}. \end{aligned} $$
(2.5)

From (2.5), we infer that there exists \(C>0\) such that \(\int _{{\mathbb{R}}^{N}}v_{n}^{2}\leq C\). Up to a subsequence, there exists \(v_{0}\in H^{1}({\mathbb{R}}^{N})\) such that \(v_{n}\rightharpoonup v_{0}\) in \(H^{1}({\mathbb{R}}^{N})\), \(v_{n}\rightarrow v_{0}\) in \(L^{r}_{\mathrm{loc}}({\mathbb{R}}^{N})\) for \(r\in [2,2^{*})\) and \(v_{n}\rightarrow v_{0}\) a.e. on \({\mathbb{R}}^{N}\).

Now, we claim that there exist \(\delta >0\) and \(\{y_{n}\}\subset {\mathbb{R}}^{N}\) such that \(\int _{B_{1}(y_{n})}|v_{n}|^{2}>\delta \). Assume by contradiction, by Lion’s concentration compactness lemma in [19], that \(v_{n}\rightarrow 0\) in \(L^{r}({\mathbb{R}}^{N})\) for \(2< r<2^{*}\). Moreover, by \(\mathcal{P}(v_{n})=0\), we know that

$$ \begin{aligned} 0&\leftarrow \int _{{\mathbb{R}}^{N}}(I_{\alpha }*G(f(v_{n})))G(f(v_{n}))\\ &= \frac{N-2}{N+\alpha } \int _{{\mathbb{R}}^{N}} \vert \nabla v_{n} \vert ^{2}+ \frac{N}{N+\alpha } \int _{{\mathbb{R}}^{N}}f^{2}(v_{n}) \geq \frac{N-2}{N+\alpha }\rho ^{2}>0, \end{aligned} $$

as \(n\rightarrow +\infty \). This is a contradiction. Thus there exist \(\delta >0\) and \(\{y_{n}\}\subset {\mathbb{R}}^{N}\) such that \(\int _{B_{1}(y_{n})}|v_{n}|^{2}>\delta \). Set \(\bar{v}_{n}(x)=v_{n}(x+y_{n})\). Then \(\|\bar{v}_{n}\|=\|v_{n}\|\). Thus, up to a subsequence, there exists \(\bar{v}_{0}\in H^{1}({\mathbb{R}}^{N})\backslash \{0\}\) such that \(\bar{v}_{n}\rightharpoonup \bar{v}_{0}\) in \(H^{1}({\mathbb{R}}^{N})\), \(\bar{v}_{n}\rightarrow \bar{v}_{0}\) in \(L^{r}_{\mathrm{loc}}({\mathbb{R}}^{N})\) for \(r\in [2,2^{*})\), and \(\bar{v}_{n}\rightarrow \bar{v}_{0}\) a.e. on \({\mathbb{R}}^{N}\). By translation invariance, one has

$$ \varPhi (\bar{v}_{n})\rightarrow c, \qquad \mathcal{P}( \bar{v}_{n}) \rightarrow 0, \quad \text{as } n\rightarrow +\infty $$
(2.6)

and \(\int _{B_{1}(0)}|\bar{v}_{n}|^{2}>\delta \). Set \(\bar{w}_{n}:=\bar{v}_{n}-\bar{v}_{0}\). Thus Lemma 2.7 yields that

$$ c=\varPhi (\bar{v}_{0})+\varPhi (\bar{w}_{n})+o_{n}(1) \quad \text{and} \quad 0= \mathcal{P}(\bar{v}_{0})+\mathcal{P}( \bar{w}_{n})+o_{n}(1). $$
(2.7)

If there exists a subsequence \(\{\bar{w}_{n_{i}}\}\) of \(\{\bar{w}_{n}\}\) such that \(\bar{w}_{n_{i}}=0\), then up to a subsequence, we have

$$ \varPhi (\bar{v}_{0})=c,\qquad \mathcal{P}( \bar{v}_{0})=0. $$
(2.8)

Next, we assume that \(\bar{w}_{n}\neq 0\). We claim that \(\mathcal{P}(\bar{v}_{0})\leq 0\). Otherwise, if \(\mathcal{P}(\bar{v}_{0})>0\), it follows from (2.7) that \(\mathcal{P}(\bar{w}_{n})<0\) for n large. By virtue of Lemma 2.6, there exists \(t_{n}>0\) such that \((\bar{w}_{n})_{t_{n}}\in \mathcal{Q}\). By (2.7) and Lemma 2.2, we get

$$ \begin{aligned} &c-\frac{N-2}{N+\alpha } \int _{{\mathbb{R}}^{N}} \vert \nabla \bar{v}_{0} \vert ^{2}- \frac{N}{N+\alpha } \int _{{\mathbb{R}}^{N}}f^{2}(\bar{v}_{0})+o_{n}(1) \\ &\quad = \varPhi (\bar{w}_{n})-\frac{1}{N+\alpha }\mathcal{P}( \bar{w}_{n})\geq \varPhi \bigl((\bar{w}_{n})_{t_{n}}\bigr)- \frac{t^{N+\alpha }_{n}}{N+\alpha } \mathcal{P}(\bar{w}_{n}) \geq c-\frac{t^{N+\alpha }_{n}}{N+\alpha } \mathcal{P}(\bar{w}_{n})\geq c, \end{aligned} $$

which is a contradiction due to \(\int _{{\mathbb{R}}^{N}}|\nabla \bar{v}_{0}|^{2}>0\). Thus \(\mathcal{P}(\bar{v}_{0})\leq 0\). Since \(\bar{v}_{0}\neq 0\), in view of Lemma 2.6, there exists \(t_{0}>0\) such that \((\bar{v}_{0})_{t_{0}}\in \mathcal{Q}\). By Lemma 2.3 and the weak semi-continuity of norm, we have

$$ \begin{aligned}c&=\lim_{n\rightarrow \infty } \biggl[\varPhi ( \bar{v}_{n}) - \frac{1}{N+\alpha }\mathcal{P}(\bar{v}_{n}) \biggr] \\ &=\frac{N-2}{N+\alpha }\lim_{n\rightarrow \infty } \int _{{\mathbb{R}}^{N}} \vert \nabla \bar{v}_{n} \vert ^{2} +\frac{N}{N+\alpha }\lim_{n\rightarrow \infty } \int _{{\mathbb{R}}^{N}}f^{2}(\bar{v}_{n}) \\ &\geq \frac{N-2}{N+\alpha } \int _{{\mathbb{R}}^{N}} \vert \nabla \bar{v}_{0} \vert ^{2}+ \frac{N}{N+\alpha } \int _{{\mathbb{R}}^{N}}f^{2}(\bar{v}_{0}) \\ &\geq \varPhi (\bar{v}_{0}) -\frac{t^{N+\alpha }_{0}}{N+\alpha } \mathcal{P}( \bar{v}_{0}) \\ &\geq \varPhi \bigl((\bar{v}_{0})_{t_{0}}\bigr) - \frac{t^{N+\alpha }_{0}}{N+\alpha } \mathcal{P}(\bar{v}_{0}) \\ &\geq c-\frac{t^{N+\alpha }_{0}}{N+\alpha } \mathcal{P}(\bar{v}_{0}) \geq c, \end{aligned} $$

which implies that (2.8) holds. The proof is completed. □

By a standard argument in [14, 18, 19], we can get the following lemma.

Lemma 2.11

Assume that\((g_{1})\)\((g_{4})\)hold. If\(\tilde{v}\in \mathcal{Q}\)and\(\varPhi (\tilde{v})=c\), thenis a critical point ofΦ.

Proof of Theorem 1.1

By Lemma 2.7, Lemma 2.10, and Lemma 2.11, there exists \(v_{0}\in \mathcal{Q}\) such that

$$ \varPhi (v_{0})=c=\inf_{v\in \varTheta }\max_{t>0} \varPhi (v_{t}),\quad \varPhi '(v_{0})=0. $$

This completes the proof. □