1 Introduction

In this paper we consider the existence and non-existence of positive solutions to the following negative power nonlinear integral equation:

$$ f^{q-1}(x)= \int _{\varOmega }\frac{K(x)f(y)K(y)}{ \vert x-y \vert ^{n-\alpha }}\,dy+ \lambda \int _{\varOmega }\frac{G(x)f(y)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dy, \quad f \geq 0,x\in \overline{ \varOmega }, $$
(1.1)

where \(0< q<1\), \(\alpha >n\), \(0<\beta <\alpha -n\), \(\lambda \in \mathbb{R}\), Ω is a smooth bounded domain, \(K(x)\), \(G(x)\) are positive continuous functions in Ω̅.

For \(0<\alpha <n\), \(G(x)\equiv 1\), the existence and non-existence of positive solutions to (1.1) were studied by Dou–Zhu [2] and Guo–Wang [3] recently. Notice that when \(0<\alpha <n\) this nonlinear integral equation is closely related to the sharp Hardy–Littlewood–Sobolev (HLS for short) inequality [47].

For \(\alpha >n\), the existence and non-existence of positive solutions to (1.1) are also studied by Dou–Guo–Zhu [1] when \(K(x)\equiv G(x)\equiv 1\). In this case the nonlinear integral equation is related to the sharp reversed HLS inequality obtained by Beckner [8] and Dou–Zhu [9], respectively. In fact, Eq. (1.1) (when \(K(x)\equiv 1\), \(\lambda =0\)) can be seen as the Euler–Lagrange equation of the following minimizing problem related to the reversed HLS inequality:

$$ \xi _{\alpha }(\varOmega )=\inf_{f\in L^{\frac{2n}{n+\alpha }}(\varOmega ),f \ge 0, f \ne 0} \frac{\int _{\varOmega } \int _{\varOmega } f(x) \vert x-y \vert ^{-(n-\alpha )} f(y) \,dx \,dy}{ \Vert f \Vert ^{2}_{L^{\frac{2n}{n+\alpha }}(\varOmega )}}. $$

On the other hand, for Eq. (1.1) with \(K(x)\equiv 1\) and \(\lambda =0\), the blowup behavior of energy maximizing positive solutions as \(q\to (\frac{2n}{n+\alpha })^{+} \) when \(1<\alpha <n\), and the blowup behavior of energy minimizing positive solution as \(q\to (\frac{2n}{n+\alpha })^{-}\) when \(\alpha >n\) are also analyzed by Guo [10].

In this paper we consider the integral equation (1.1) for general weight functions \(K(x)\), \(G(x)\) and \(\alpha >n\).

The following condition is needed.

\((\mathcal{T})\).:

\(K(x_{*})-K(x)=o( \vert x-x_{*} \vert ^{\gamma })\) as \(x\to x_{*}\), where \(K(x_{*})=\min_{x\in \overline{\varOmega }}K(x)\), \(\gamma >0\).

Denote \(G(\tilde{x}_{*})=\max_{x\in \overline{\varOmega }}G(x)\).

The main results are stated as follows.

Theorem 1.1

Assume\(\alpha >n\), \(\beta \in (0,\alpha -n)\), Ωis a smooth bounded domain of diameter\(d(\varOmega )\).

  1. (i)

    For\(0< q<\frac{2n}{n+\alpha }\) (subcritical case), \(-\frac{K^{2}(x_{*})}{d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})}< \lambda \), the positive functions\(K(x),G(x)\in C^{1}(\overline{\varOmega })\), then there is a positive solution\(f\in C^{1}(\overline{\varOmega })\)to Eq. (1.1).

  2. (ii)

    For\(q=\frac{2n}{n+\alpha }\) (critical case), \(- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})}<\lambda <0\), the positive functions\(K(x),G(x)\in C^{1}(\overline{\varOmega })\), assume further that\(\beta < n\)and\((\mathcal{T})\)holds, then there is a positive solution\(f\in C^{1}(\overline{\varOmega })\)to Eq. (1.1).

  3. (iii)

    For\(\frac{2n}{n+\alpha }\leq q<1\) (critical case and supercritical case), \(\lambda \geq 0\), the nonnegative functions\(K(x),G(x)\in C^{1}(\overline{\varOmega })\), ifΩis a star-shaped domain with respect to, \((x-\tilde{x},\nabla K(x))\geq 0\)and\((x-\tilde{x},\nabla G(x))\geq 0\), then there is not any positive\(C^{1}(\overline{\varOmega })\)solution to Eq. (1.1).

We use c, C throughout the paper to represent positive constants, which may vary from line to line.

2 Preliminaries

For simplicity, we denote \(p_{\alpha }:=\frac{2n}{n-\alpha }\), \(q_{\alpha }:=\frac{2n}{n+\alpha }\) throughout the paper. For \(0< q<1\), we also denote \(L^{q}(\varOmega ):=\{f\mid \int _{\varOmega } \vert f \vert ^{q}(x)\,dx<\infty \}\) for any domain \(\varOmega \subset \mathbb{R}^{n}\), \(L_{+}^{q}(\varOmega ):=\{f\in L^{q}(\varOmega )\setminus \{0\}:f\ge 0\}\) and define \(\Vert f \Vert _{L^{q}(\varOmega )}:=(\int _{\varOmega } \vert f \vert ^{q}(x)\,dx)^{\frac{1}{q}}\) for \(f\in L^{q}(\varOmega )\). Notice that \(\Vert f \Vert _{L^{q}(\varOmega )}\) is not a norm if \(0< q<1\).

We first recall the sharp reversed HLS inequality on \(\mathbb{R}^{n}\).

Theorem A

(see [8, 9])

Let\(\alpha >n\). Then

$$ \biggl\vert \int _{\mathbb{R}^{n}} \int _{\mathbb{R}^{n}}f(x) \vert x-y \vert ^{-(n- \alpha )}g(y)\,dx\,dy \biggr\vert \geq N_{\alpha } \Vert f \Vert _{L^{q_{\alpha }}( \mathbb{R}^{n})} \Vert g \Vert _{L^{q_{\alpha }}(\mathbb{R}^{n})} $$
(2.1)

for all\(f,g\in L^{q_{\alpha }}(\mathbb{R}^{n})\), where\(N_{\alpha }:=\pi ^{\frac{n-\alpha }{2}} \frac{\varGamma (\frac{\alpha }{2})}{\varGamma (\frac{n}{2}+\frac{\alpha }{2})} (\frac{\varGamma (\frac{n}{2})}{\varGamma (n)} )^{-\frac{\alpha }{n}} \). Moreover, the equality holds if and only if\(f(x)=c_{1}g(x)=c_{2}(\frac{1}{c_{3}+ \vert x-x_{0} \vert ^{2}})^{ \frac{n+\alpha }{2}}\), where\(c_{1}\), \(c_{2}\), \(c_{3}\)are any constants, \(x_{0}\in \mathbb{R}^{n}\).

3 Proofs of the main results

Here and hereafter we always assume \(\alpha >n\).

3.1 Existence—subcritical case

We first prove the existence of positive solution to Eq. (1.1) in the subcritical case \(0< q< q_{\alpha }\). The following lemma from [2] is needed.

Lemma 3.1

(see [2])

Let\(q\in (0,q_{\alpha })\). There exists a positive constant\(C(n,q, \alpha ,\varOmega )>0\)such that

$$ \int _{\varOmega } \int _{\varOmega }f(x) \vert x-y \vert ^{-(n-\alpha )}f(y)\,dx\,dy \geq C(n,q, \alpha ,\varOmega ) \Vert f \Vert ^{2}_{L^{q}(\varOmega )} $$
(3.1)

for any nonnegative function\(f\in L^{q}(\varOmega )\).

Now we prove the following lemma, which implies the existence result of part (i) in Theorem 1.1.

Lemma 3.2

Assume the positive functions\(K(x), G(x)\in C^{1}(\overline{\varOmega })\). Then, for\(0< q< q_{\alpha }\), \(\lambda >- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})}\), the infimum

$$\begin{aligned}& Q_{\lambda ,q}(\varOmega ) \\& \quad :=\inf_{f\in L_{+}^{q}(\varOmega )} \frac{\int _{\varOmega }\int _{\varOmega }f(x)(K(x) \vert x-y \vert ^{-(n-\alpha )}K(y)+\lambda G(x) \vert x-y \vert ^{-(n-\alpha -\beta )}G(y))f(y)\,dx\,dy}{ \Vert f \Vert _{L^{q}(\varOmega )}^{2}} \end{aligned}$$

is attained by some nonnegative function in\(L_{+}^{q}(\varOmega )\).

Proof

Notice that \(\lambda >- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})}\) and

$$ K(x)K(y)+\lambda G(x) \vert x-y \vert ^{\beta }G(y)\geq K^{2}(x_{*})+\lambda d^{ \beta }(\varOmega )G^{2}(\tilde{x}_{*})>0,\quad x,y\in \varOmega . $$

Then by Lemma 3.1, \(Q_{\lambda ,q}(\varOmega )>0\).

Now we can choose the minimizing positive sequence \(\{f_{j}\}_{j=1}^{\infty }\) in \(L_{+}^{q}(\varOmega )\) and argue as Lemma 3.2 in [1]. We sketch it for the reader’s convenience. Assume \(f_{j}\in L^{q_{\alpha }}(\varOmega )\) and \(\Vert f_{j} \Vert _{L^{q_{\alpha }}(\varOmega )}=1\). Then, up to a subsequence,

$$ f_{j}^{q}\rightharpoonup f_{*}^{q} \quad \text{in } L^{\frac{q_{\alpha }}{q}}( \varOmega ), \text{as } j\rightarrow \infty , $$

and

$$ \int _{\varOmega }f_{j}^{q}\rightarrow \int _{\varOmega }f_{*}^{q}, \quad \text{as } j \rightarrow \infty . $$

As in [1], we have \(\Vert f_{j} \Vert _{L^{1}(\varOmega )}\leq C\). Thus \(\int _{\varOmega }f_{*}^{q}>C>0\) via an interpolation inequality and \(f_{j}^{q}\rightharpoonup f_{*}^{q}\) weakly in \(L^{\frac{1}{q}}(\varOmega )\). For any fixed \(x\in \overline{\varOmega }\), \(f_{*}^{1-q}(y) \vert x-y \vert ^{\alpha -n}(K(x)K(y)+\lambda G(x) \vert x-y \vert ^{\beta }G(y)) \in L^{\frac{1}{1-q}}(\varOmega )\). Therefore

$$\begin{aligned}& \int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y) \vert x-y \vert ^{\alpha -n}\bigl(K(x)K(y)+ \lambda G(x) \vert x-y \vert ^{\beta }G(y)\bigr)\,dy \\& \quad \rightarrow \int _{\varOmega }f_{*}(y) \vert x-y \vert ^{\alpha -n}\bigl(K(x)K(y)+ \lambda G(x) \vert x-y \vert ^{\beta }G(y)\bigr)\,dy, \quad\text{as } j\rightarrow \infty . \end{aligned}$$

Now we prove that the convergence is uniform for all \(x\in \overline{\varOmega }\). Firstly, as Lemma 3.2 in [1], we have \(\int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y) \vert x-y \vert ^{\alpha -n}(K(x)K(y)+ \lambda G(x) \vert x-y \vert ^{\beta }G(y))\,dy\) is uniformly bounded for \(x\in \overline{\varOmega }\). Now it is left to prove that \(\int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y) \vert x-y \vert ^{\alpha -n}(K(x)K(y)+ \lambda G(x) \vert x-y \vert ^{\beta }G(y))\,dy\) is equicontinuous in Ω̅. Notice that \(K(x),G(x)\in C^{1}(\overline{\varOmega })\) and for any \(x_{1},x_{2},y\in \overline{\varOmega }\),

$$ \bigl\vert \vert x_{1}-y \vert ^{\alpha -n}- \vert x_{2}-y \vert ^{\alpha -n} \bigr\vert \leq \textstyle\begin{cases} C \vert x_{1}-x_{2} \vert ^{\alpha -n}, &0< \alpha -n\leq 1, \\ C \vert x_{1}-x_{2} \vert , &\alpha -n>1. \end{cases} $$

Then since \(\int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y)K(y)\,dy\) is bounded, for any \(x_{1},x_{2}\in \overline{\varOmega }\),

$$\begin{aligned} & \biggl\vert \int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y) \vert x_{1}-y \vert ^{\alpha -n}K(y)\,dy- \int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y) \vert x_{2}-y \vert ^{\alpha -n}K(y)\,dy \biggr\vert \\ &\quad \leq \int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y)K(y) \bigl\vert \vert x_{1}-y \vert ^{ \alpha -n}- \vert x_{2}-y \vert ^{\alpha -n} \bigr\vert \,dy \\ &\quad \leq C\max \bigl( \vert x_{1}-x_{2} \vert ^{\alpha -n}, \vert x_{1}-x_{2} \vert \bigr). \end{aligned}$$

So \(\int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y) \vert x-y \vert ^{\alpha -n}K(y)\,dy\) and, by a similar argument, \(\lambda \int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y) \vert x- y \vert ^{\alpha + \beta -n}G(y)\,dy\) are equicontinuous in \(x\in \overline{\varOmega }\). Thus we see that \(\int _{\varOmega }f_{j}^{q}(y)f_{*}^{1-q}(y) \vert x-y \vert ^{\alpha -n} (K(x)K(y)+ \lambda G(x) \vert x-y \vert ^{\beta }G(y))\,dy\) is equicontinuous in Ω̅.

Now similar to Lemma 3.2 in [1], we can prove

$$\begin{aligned} & \liminf_{j\rightarrow \infty } \int _{\varOmega } \int _{ \varOmega }f_{j}(x) \vert x-y \vert ^{\alpha -n}\bigl(K(x)K(y)+\lambda G(x) \vert x-y \vert ^{\beta }G(y)\bigr)f_{j}(y)\,dx\,dy \\ &\quad \geq \int _{\varOmega } \int _{\varOmega }f_{*}(x) \vert x-y \vert ^{\alpha -n}\bigl(K(x)K(y)+ \lambda G(x) \vert x-y \vert ^{\beta }G(y)\bigr)f_{*}(y)\,dx\,dy. \end{aligned}$$

By \(\Vert f_{j} \Vert _{L^{q}(\varOmega )}\rightarrow \Vert f_{*} \Vert _{L^{q}(\varOmega )}>0\) and the above,

$$\begin{aligned} & \liminf_{j\rightarrow \infty } \frac{\int _{\varOmega }\int _{\varOmega }f_{j}(x) \vert x-y \vert ^{\alpha -n}(K(x)K(y)+\lambda G(x) \vert x-y \vert ^{\beta }G(y))f_{j}(y)\,dx\,dy}{ \Vert f_{j} \Vert ^{2}_{L^{q}(\varOmega )}} \\ &\quad \geq \frac{\int _{\varOmega }\int _{\varOmega }f_{*}(x) \vert x-y \vert ^{\alpha -n}(K(x)K(y)+\lambda G(x) \vert x-y \vert ^{\beta }G(y))f_{*}(y)\,dx\,dy}{ \Vert f_{*} \Vert ^{2}_{L^{q}( \varOmega )}}. \end{aligned}$$

That is, \(f_{*}\) is the minimizer. □

Again as that in [1], we obtain \(u\in C^{1}(\overline{\varOmega })\). Thus we complete the proof of Theorem 1.1 (i).

Remark 3.3

We assume \(\lambda >- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})}\) here to make sure that \(Q_{\lambda ,q}(\varOmega )\) is positive.

3.2 Existence—critical case

Now we establish the existence and the regularity results for the weak solution to (1.1) with critical exponent for \(\lambda <0\). Consider

$$\begin{aligned}& {Q_{\lambda ,q_{\alpha }}(\varOmega )}\\& \quad =\inf_{f\in L_{+}^{q_{ \alpha }}(\varOmega )} \frac{\int _{\varOmega }\int _{\varOmega }f(x)(K(x) \vert x-y \vert ^{-(n-\alpha )}K(y)+\lambda G(x) \vert x-y \vert ^{-(n-\alpha -\beta )}G(y))f(y)\,dy\,dx}{ \Vert f \Vert _{L^{q_{\alpha }}(\varOmega )}^{ 2}}. \end{aligned}$$

Notice that the corresponding Euler–Lagrange equation for extremal functions, up to a constant multiplier, is the integral equation (1.1) with \(q=q_{\alpha }\).

We first show the following lemma.

Lemma 3.4

Assume that the positive functions\(K(x),G(x)\in C^{1}(\overline{\varOmega })\)and\((\mathcal{T})\)holds. Then\({Q_{\lambda ,q_{\alpha }}(\varOmega )}< K^{2}(x_{*})N_{\alpha }\)for all\(\lambda <0\). Further, \(0<{Q_{\lambda ,q_{\alpha }}(\varOmega )}<K^{2}(x_{*})N_{ \alpha }\)for any\(\lambda \in (- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})},0)\), where\(\beta >0\).

Proof

We distinguish two cases: (I) \(x_{*}\in \varOmega \); (II) \(x_{*} \in \partial \varOmega \).

(I) Let \(x_{*}\in \varOmega \). By \((\mathcal{T})\), there exists small \(R>0\) such that \(K(x)-K(x_{*})\leq c \vert x-x_{*} \vert ^{\gamma }\) when \(x\in B_{R}(x_{*})\subset \varOmega \). For small \(\epsilon >0\), we define

$$ \widetilde{f}_{\epsilon }(x)= \textstyle\begin{cases} f_{\epsilon }(x),&x\in B_{R}(x_{*})\subset \varOmega , \\ 0,&x\in \mathbb{R}^{n}\setminus B_{R}(x_{*}), \end{cases} $$

where \(f_{\epsilon }(x)=\epsilon ^{-\frac{n+\alpha }{2}}f_{1}( \frac{x-x_{*}}{\epsilon })=( \frac{\epsilon }{\epsilon ^{2}+ \vert x-x_{*} \vert ^{2}})^{\frac{n+\alpha }{2}}\), \({f_{1}(x)=(\frac{1}{1+ \vert x \vert ^{2}})^{\frac{n+\alpha }{2}}}\). Notice that \(f_{1}\) and its conformal equivalent class \(f_{\epsilon }\) are the extremal functions to the sharp reversed HLS inequality (2.1). Obviously, \(\widetilde{f}_{\epsilon }\in L^{q_{\alpha }}(\mathbb{R}^{n})\). By \((\mathcal{T})\), we have

$$\begin{aligned}& \int _{\varOmega } \int _{\varOmega }\biggl(\frac{K(x)K(y)}{ \vert x-y \vert ^{n-\alpha }}+ \frac{\lambda G(x)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\biggr) \widetilde{f}_{ \epsilon }(x)\widetilde{f}_{\epsilon }(y)\,dx\,dy \\& \quad = \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})}\biggl( \frac{K(x)K(y)}{ \vert x-y \vert ^{n-\alpha }}+ \frac{\lambda G(x)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }} \biggr)f_{\epsilon }(x)f_{ \epsilon }(y)\,dx\,dy \\& \quad \leq \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{(K(x_{*})+c \vert x-x_{*} \vert ^{\gamma })(K(x_{*})+c \vert y-x_{*} \vert ^{\gamma })}{ \vert x-y \vert ^{n-\alpha }}f_{ \epsilon }(x)f_{\epsilon }(y) \,dx\,dy \\& \quad \quad{} +\lambda \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{G(x)G(y) f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dx\,dy \\& \quad = \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{K^{2}(x_{*})+K(x_{*})(c \vert x-x_{*} \vert ^{\gamma }+c \vert y-x_{*} \vert ^{\gamma })+c^{2} \vert x-x_{*} \vert ^{\gamma } \vert y-x_{*} \vert ^{\gamma }}{ \vert x-y \vert ^{n-\alpha }} \\& \quad\quad{}\times f_{ \epsilon }(x)f_{\epsilon }(y) \,dx\,dy \\& \quad\quad{} +\lambda \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{G(x)G(y) f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dx\,dy \\& \quad \leq \int _{\mathbb{R}^{n}} \int _{\mathbb{R}^{n}} \frac{K^{2}(x_{*})f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy +\lambda \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{G(x)G(y) f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dx\,dy \\& \quad\quad{} +c^{2} \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{ \vert x-x_{*} \vert ^{\gamma } \vert y-x_{*} \vert ^{\gamma }f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\& \quad \quad{} +2c \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{K(x_{*}) \vert x-x_{*} \vert ^{\gamma }f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\& \quad = K^{2}(x_{*})N_{\alpha } \Vert f_{\epsilon } \Vert ^{2}_{L^{q_{\alpha }}( \mathbb{R}^{n})}+I_{1}+I_{2}+I_{3}, \end{aligned}$$
(3.2)

where

$$\begin{aligned} I_{1}:&=\lambda \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{G(x)G(y) f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dx\,dy, \\ I_{2}:&=c^{2} \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{ \vert x-x_{*} \vert ^{\gamma } \vert y-x_{*} \vert ^{\gamma }f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy, \\ I_{3}:&=2c \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{K(x_{*}) \vert x-x_{*} \vert ^{\gamma }f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy. \end{aligned}$$

For \(I_{1}\), we have

$$\begin{aligned} I_{1}&= \lambda \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{G(x)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\biggl( \frac{\epsilon }{\epsilon ^{2}+ \vert x-x_{*} \vert ^{2}} \biggr)^{\frac{n+\alpha }{2}}\biggl( \frac{\epsilon }{\epsilon ^{2}+ \vert y-x_{*} \vert ^{2}}\biggr)^{\frac{n+\alpha }{2}}\,dx\,dy \\ &\le C\lambda \epsilon ^{-(n-\alpha -\beta )-(n+\alpha )} \int _{B_{R}(0)} \int _{B_{R}(0)} \biggl\vert \frac{x-y}{\epsilon } \biggr\vert ^{-(n-\alpha -\beta )}\biggl(1+ \biggl\vert \frac{x}{\epsilon } \biggr\vert ^{2}\biggr)^{-\frac{n+\alpha }{2}}\biggl(1+ \biggl\vert \frac{y}{\epsilon } \biggr\vert ^{2}\biggr)^{-\frac{n+\alpha }{2}}\,dx\,dy \\ &=C\lambda \epsilon ^{\beta } \int _{B_{\frac{R}{\epsilon }}(0)} \int _{B_{ \frac{R}{\epsilon }}(0)} \vert \xi -\eta \vert ^{-(n-\alpha -\beta )}\bigl(1+ \vert \xi \vert ^{2}\bigr)^{- \frac{n+\alpha }{2}}\bigl(1+ \vert \eta \vert ^{2}\bigr)^{-\frac{n+\alpha }{2}}\,d\xi \,d\eta \\ &\leq C_{1}\lambda \epsilon ^{\beta }. \end{aligned}$$

For \(I_{2}\), we have

$$\begin{aligned} I_{2}&:=c^{2} \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{ \vert x-x_{*} \vert ^{\gamma } \vert y-x_{*} \vert ^{\gamma }f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &\leq c^{2}R^{2\gamma } \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &\leq c^{2}R^{2\gamma } \int _{\mathbb{R}^{n}} \int _{\mathbb{R}^{n}} \frac{f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &=C_{2} R^{2\gamma }, \end{aligned}$$

where \(C_{2}:=c^{2}N_{\alpha } \Vert f_{\epsilon } \Vert ^{2}_{L^{q_{\alpha }}( \mathbb{R}^{n})}\). For \(I_{3}\), we have

$$\begin{aligned} I_{3}&:=2c \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{K(x_{*}) \vert x-x_{*} \vert ^{\gamma }f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &\leq 2cR^{\gamma } \int _{B_{R}(x_{*})} \int _{B_{R}(x_{*})} \frac{K(x_{*})f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &\leq 2cR^{\gamma } \int _{\mathbb{R}^{n}} \int _{\mathbb{R}^{n}} \frac{K(x_{*})f_{\epsilon }(x)f_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ & = C_{3} R^{\gamma }, \end{aligned}$$

where \(C_{3}:=2c K(x_{*}) N_{\alpha } \Vert f_{\epsilon } \Vert ^{2}_{L^{q_{\alpha }}( \mathbb{R}^{n})}\). Therefore, for \(\lambda <0\), we can take s satisfying \(\frac{\beta }{\gamma }< s\), and \(R=\epsilon ^{s}>0\) for some \(\epsilon >0\) small enough, such that

$$\begin{aligned} I_{1}+I_{2}+I_{3}&\leq C_{1}\lambda \epsilon ^{\beta }+C_{2}R^{2 \gamma }+C_{3}R^{\gamma } \\ &=C_{1}\lambda \epsilon ^{\beta }+C_{2}\epsilon ^{2s\gamma }+C_{3} \epsilon ^{s\gamma }< 0. \end{aligned}$$

Combining this with (3.2), for \(\lambda <0\), \(\epsilon >0\) small enough, we have

$$ \int _{\varOmega } \int _{\varOmega }\biggl(\frac{K(x)K(y)}{ \vert x-y \vert ^{n-\alpha }}+ \frac{\lambda G(x)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\biggr) \widetilde{f}_{ \epsilon }(x)\widetilde{f}_{\epsilon }(y)\,dx\,dy < K^{2}(x_{*})N_{ \alpha } \Vert f_{\epsilon } \Vert ^{2}_{L^{q_{\alpha }}(\mathbb{R}^{n})}. $$

That is, for any \(\lambda <0\), \({Q_{\lambda ,q_{\alpha }}(\varOmega )}< K^{2}(x_{*})N_{\alpha }\).

(II) Let \(x_{*}\in \partial \varOmega \). By \((\mathcal{T})\), there exists \(\rho _{1}>0\) such that \(K(x)-K(x_{*})\leq c \vert x-x_{*} \vert ^{\gamma }\) when \(x\in V:=\overline{\varOmega }\cap \overline{B(x_{*},\rho _{1})}\).

Let \(0<\rho _{0}<\rho _{1}\), \(x_{0}\in V\) satisfying \(B_{\rho _{0}}(x_{0})\subset V-\partial V\), \(\vert x_{0}-x_{*} \vert =2\rho _{0}\). Then, for any \(x\in B_{\rho _{0}}(x_{0})\), we have

$$ K(x)-K(x_{*})\leq C\bigl( \vert x-x_{0} \vert ^{\gamma }+ \vert x_{0}-x_{*} \vert ^{\gamma }\bigr). $$

We define

$$ \widetilde{f}_{\epsilon }(x)= \textstyle\begin{cases} \overline{f}_{\epsilon }(x),&x\in B_{\rho _{0}}(x_{0})\subset \varOmega , \\ 0,&x\in \mathbb{R}^{n}\setminus B_{\rho _{0}}(x_{0}), \end{cases} $$

where \(\overline{f}_{\epsilon }(x)=\epsilon ^{-\frac{n+\alpha }{2}}f_{1}( \frac{ \vert x-x_{0} \vert }{\epsilon })=( \frac{\epsilon }{\epsilon ^{2}+ \vert x-x_{0} \vert ^{2}})^{\frac{n+\alpha }{2}}\).

Similar to (I),

$$\begin{aligned}& \int _{\varOmega } \int _{\varOmega }\biggl(\frac{K(x)K(y)}{ \vert x-y \vert ^{n-\alpha }}+ \frac{\lambda G(x)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\biggr) \widetilde{f}_{ \epsilon }(x)\widetilde{f}_{\epsilon }(y)\,dx\,dy \\& \quad = \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})}\biggl( \frac{K(x)K(y)}{ \vert x-y \vert ^{n-\alpha }}+ \frac{\lambda G(x)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\biggr) \overline{f}_{ \epsilon }(x)\overline{f}_{\epsilon }(y)\,dx\,dy \\& \quad \leq \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{(K(x_{*})+C( \vert x-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma }))(K(x_{*})+C( \vert y-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma }))}{ \vert x-y \vert ^{n-\alpha }} \\& \quad \quad{} \times\overline{f}_{\epsilon }(x) \overline{f}_{\epsilon }(y)\,dx\,dy \\& \quad \quad{} +\lambda \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{G(x)G(y)\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dx\,dy \\& \quad \leq \int _{\mathbb{R}^{n}} \int _{\mathbb{R}^{n}} \frac{K^{2}(x_{*})\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy+ \lambda \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{G(x)G(y) \overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dx\,dy \\& \quad \quad{} +2C \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{K(x_{*})( \vert x-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\& \quad \quad{} +C^{2} \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{( \vert x-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })( \vert y-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\& \quad = K^{2}(x_{*})N_{\alpha } \Vert \overline{f}_{\epsilon } \Vert ^{2}_{L^{q_{ \alpha }}(\mathbb{R}^{n})}+J_{1}+J_{2}+J_{3}, \end{aligned}$$
(3.3)

where

$$\begin{aligned}& J_{1}:= \lambda \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{G(x)G(y) \overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dx\,dy, \\& J_{2}:= 2C \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{K(x_{*})( \vert x-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy, \\& J_{3}:= C^{2} \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{( \vert x-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })( \vert y-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\, dy. \end{aligned}$$

As in case (I), we know \(J_{1}\leq C_{4}\lambda \epsilon ^{\beta }\). For \(J_{2}\), we have

$$\begin{aligned} J_{2}&=2C \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{K(x_{*})( \vert x-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &\leq CK(x_{*})\rho _{0}^{\gamma } \int _{B_{\rho _{0}}(x_{0})} \int _{B_{ \rho _{0}}(x_{0})} \frac{\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &\leq C_{5}\rho _{0}^{\gamma }. \end{aligned}$$

For \(J_{3}\), we have

$$\begin{aligned} J_{3}&=C^{2} \int _{B_{\rho _{0}}(x_{0})} \int _{B_{\rho _{0}}(x_{0})} \frac{( \vert x-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })( \vert y-x_{0} \vert ^{\gamma }+ \vert 2\rho _{0} \vert ^{\gamma })\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &\leq C^{2}\rho _{0}^{2\gamma } \int _{B_{\rho _{0}}(x_{0})} \int _{B_{ \rho _{0}}(x_{0})} \frac{\overline{f}_{\epsilon }(x)\overline{f}_{\epsilon }(y)}{ \vert x-y \vert ^{n-\alpha }}\,dx\,dy \\ &\leq C_{6}\rho _{0}^{2\gamma }. \end{aligned}$$

Taking s with \(\frac{\beta }{\gamma }< s\) and \(\rho _{0}=\epsilon ^{s}>0\), then

$$\begin{aligned} J_{1}+J_{2}+J_{3}&\leq C_{4}\lambda \epsilon ^{\beta }+C_{5}\rho _{0}^{ \gamma }+C_{6} \rho _{0}^{2\gamma } \\ &=C_{4}\lambda \epsilon ^{\beta }+C_{5}\epsilon ^{s\gamma }+C_{6} \epsilon ^{2s\gamma }< 0 \end{aligned}$$

for \(\epsilon >0\) small enough. Thus, combining this with (3.3), for \(\lambda <0\), \(\epsilon >0\) small enough, we have

$$ \int _{\varOmega } \int _{\varOmega }\biggl(\frac{K(x)K(y)}{ \vert x-y \vert ^{n-\alpha }}+ \frac{\lambda G(x)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\biggr) \widetilde{f}_{ \epsilon }(x)\widetilde{f}_{\epsilon }(y)\,dx\,dy < K^{2}(x_{*})N_{\alpha } \Vert \overline{f}_{\epsilon } \Vert ^{2}_{L^{q_{\alpha }}(\mathbb{R}^{n})}. $$

That is, for any \(\lambda <0\), we have \({Q_{\lambda ,q_{\alpha }}(\varOmega )}< K^{2}(x_{*})N_{\alpha }\).

On the other hand, for any \(\lambda \in (- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega ) G^{2}(\tilde{x}_{*})},0)\), we also have \({Q_{\lambda ,q_{\alpha }}(\varOmega )}>0\). So we complete the proof. □

In order to prove the existence of weak solutions, we need to prove that the minimal energy \({Q_{\lambda ,q_{\alpha }}(\varOmega )}\) is attained.

Proposition 3.5

For given\(\lambda \in (- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega ) G^{2}(\tilde{x}_{*})},0)\), \({Q_{\lambda ,q_{\alpha }}(\varOmega )}\)is attained by some positive function\(f_{*}\in L^{q_{\alpha }}(\varOmega )\).

For \(q< q_{\alpha }\), we consider

$$\begin{aligned}& Q_{\lambda ,q}(\varOmega )\\& \quad =\inf_{f\in L_{+}^{q}(\varOmega )} \frac{\int _{\varOmega }\int _{\varOmega }f(x)(K(x) \vert x-y \vert ^{-(n-\alpha )}K(y)+\lambda G(x) \vert x-y \vert ^{-(n-\alpha -\beta )}G(y))f(y)\,dx\,dy}{ \Vert f \Vert _{L^{q}(\varOmega )}^{ 2}}. \end{aligned}$$

By Lemma 3.2, the infimum is attained by the positive function \(f_{q}\) which satisfies the integral equation with the subcritical exponent

$$ Q_{\lambda ,q}(\varOmega )f^{q-1}(x)= \int _{\varOmega } \frac{K(x)f(y)K(y)}{ \vert x-y \vert ^{n-\alpha }}\,dy+\lambda \int _{\varOmega } \frac{G(x)f(y)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dy, \quad x\in \overline{ \varOmega }. $$
(3.4)

That is, \(f_{q}\) is the minimal energy solution to Eq. (3.4). It is easy to see that \(\Vert f_{q} \Vert _{L^{q}(\varOmega )}=1\), \(f_{q}\in C(\overline{\varOmega })\) and \(Q_{\lambda ,q}\rightarrow Q_{\lambda }\) as \(q\rightarrow (q_{\alpha })^{-}\).

Lemma 3.6

For\(\lambda \in (- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})},0)\), \(q\in (0,q_{ \alpha })\). Let\(f_{q}>0\)be a minimal energy solution to (3.4), where\(\Vert f_{q} \Vert _{L^{q}(\varOmega )}=1\). If\(0< Q_{\lambda ,q}(\varOmega )\leq K^{2}(x_{*})N_{\alpha }-\epsilon \)for some\(\epsilon >0\), then there exists\(C>0\)such that\(\frac{1}{C}\leq f_{q}(x)\leq C\)uniformly for all\(x\in \overline{\varOmega }\), \(q\in (0,q_{\alpha })\).

Proof

We prove it by modifying the argument of Lemma 4.3 in [1].

For any \(x\in \overline{\varOmega }\), \(q\in (0,q_{1})\), we see that \(\max_{\overline{\varOmega }}f_{q}(x)=f_{q}(x_{q})\leq C<\infty \) holds uniformly, where \(0< q_{1}< q_{\alpha }\).

We first prove that \(\max_{\overline{\varOmega }}f_{q}(x)=f_{q}(x_{q})\leq C< \infty \) holds uniformly as \(q\rightarrow (q_{\alpha })^{-}\). Otherwise, \(f_{q}(x_{q})\rightarrow \infty \), where \(x_{q}\to \tilde{x}\), up to a subsequence, as \(q\rightarrow (q_{\alpha })^{-}\). Denote

$$ \mu _{q}:=f_{q}^{-\frac{2-q}{\alpha }}(x_{q}), \quad \quad \varOmega _{\mu }:= \frac{\varOmega -x_{q}}{\mu _{q}}=\biggl\{ z\Bigm| z= \frac{x-x_{q}}{\mu _{q}},x\in \varOmega \biggr\} . $$

We define

$$ g_{q}(z)=\mu _{q}^{\frac{\alpha }{2-q}}f_{q}(\mu _{q}z+x_{q}), \quad z\in \overline{\varOmega }_{\mu }. $$

Thus \(g_{q}\) satisfies

$$\begin{aligned} Q_{\lambda ,q}(\varOmega )g_{q}^{q-1}(z)={}& \int _{\varOmega _{\mu }} \frac{K(\mu _{q}z+x_{q})g_{q}(y)K(\mu _{q}y +x_{q})}{ \vert z-y \vert ^{n-\alpha }}\,dy \\ &{} +\lambda \mu _{q}^{\beta } \int _{\varOmega _{\mu }} \frac{G(\mu _{q}z+x_{q})g_{q}(y)G(\mu _{q}y +x_{q})}{ \vert z-y \vert ^{n-\alpha -\beta }}\,dy, \quad z\in \overline{ \varOmega }_{\mu }, \end{aligned}$$
(3.5)

and \(g_{q}(0)=1\), \(g_{q}(z)\in (0,1]\).

For convenience, we define \(h_{q}(z):=g_{q}^{q-1}(z)\). So (3.5) is equivalent to

$$\begin{aligned} Q_{\lambda ,q}(\varOmega )h_{q}(z)={}& \int _{\varOmega _{\mu }} \frac{K(\mu _{q}z+x_{q})h_{q}^{p-1}(y)K(\mu _{q}y+x_{q})}{ \vert z-y \vert ^{n-\alpha }}\,dy \\ &{}+\lambda \mu _{q}^{\beta } \int _{\varOmega _{\mu }} \frac{G(\mu _{q}z+x_{q})h_{q}^{p-1}(y)G(\mu _{q}y +x_{q})}{ \vert z-y \vert ^{n-\alpha -\beta }}\,dy, \quad z\in \overline{ \varOmega }_{\mu }, \end{aligned}$$

where \(\frac{1}{p}+\frac{1}{q}=1\), \(h_{q}(0)=1\), \(h_{q}(z)\geq 1\).

Claim: There exist \(C_{1},C_{2}>0\) such that

$$ 0< C_{1}\bigl(1+ \vert z \vert ^{\alpha -n} \bigr)\leq h_{q}(z)\leq C_{2}\bigl(1+ \vert z \vert ^{\alpha -n}\bigr),z \in \tilde{\varOmega }, $$
(3.6)

holds uniformly for any domain \(\tilde{\varOmega }\subset \varOmega _{\mu }\) as \(q\rightarrow (q_{\alpha })^{-}\).

The claim can be verified by a similar argument to that in [1], we omit it here. Thus \(h_{q}(z)\) is equicontinuous in any bounded domain \(\widehat{\varOmega }\subset \varOmega _{\mu }\) as \(q\rightarrow (q_{\alpha })^{-}\). In fact, for \(R>0\),

$$\begin{aligned}& Q_{\lambda ,q}(\varOmega )h_{q}(z) \\& \quad = \int _{\varOmega _{\mu }\setminus B(0,R)} \frac{K(\mu _{q}z+x_{q})h_{q}^{p-1}(y)K(\mu _{q}y+x_{q})}{ \vert z-y \vert ^{n-\alpha }}\,dy \\& \quad \quad {} + \int _{\varOmega _{\mu }\cap B(0,R)} \frac{K(\mu _{q}z+x_{q})h_{q}^{p-1}(y)K(\mu _{q}y+x_{q})}{ \vert z-y \vert ^{n-\alpha }}\,dy \\& \quad \quad {} +\lambda \mu _{q}^{\beta } \int _{\varOmega _{\mu }\setminus B(0,R)} \frac{G(\mu _{q}z+x_{q})h_{q}^{p-1}(y)G(\mu _{q}y +x_{q})}{ \vert z-y \vert ^{n-\alpha -\beta }}\,dy \\& \quad \quad {} +\lambda \mu _{q}^{\beta } \int _{\varOmega _{\mu }\cap B(0,R)} \frac{G(\mu _{q}z+x_{q})h_{q}^{p-1}(y)G(\mu _{q}y +x_{q})}{ \vert z-y \vert ^{n-\alpha -\beta }}\,dy. \end{aligned}$$

Notice that

$$\begin{aligned} & \int _{\varOmega _{\mu }\setminus B(0,R)} \frac{h_{q}^{p-1}(y)}{ \vert z-y \vert ^{n-\alpha }}\bigl(K(\mu _{q}z+x_{q})K( \mu _{q}y+x_{q})+ \lambda \mu _{q}^{\beta }G( \mu _{q}z+x_{q})G(\mu _{q}y +x_{q}) \vert z-y \vert ^{ \beta }\bigr)\,dy \\ &\quad \geq \bigl(K^{2}(x_{*})- \vert \lambda \vert d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})\bigr) \int _{\varOmega _{\mu }\setminus B(0,R)} \frac{h_{q}^{p-1}(y)}{ \vert z-y \vert ^{n-\alpha }}\,dy\geq 0. \end{aligned}$$

For any \(\epsilon >0\) small enough, by (3.6), we have

$$\begin{aligned} 0 &\leq \int _{\varOmega _{\mu }\setminus B(0,R)} \frac{h_{q}^{p-1}(y)}{ \vert z-y \vert ^{n-\alpha }}\bigl(K(\mu _{q}z+x_{q})K( \mu _{q}y+x_{q}) \\ &\quad{} +\lambda \mu _{q}^{\beta }G(\mu _{q}z+x_{q}) \vert z-y \vert ^{\beta }G( \mu _{q}y+x_{q})\bigr)\,dy \\ &\leq C \int _{\varOmega _{\mu }\setminus B(0,R)} \frac{h_{q}^{p-1}(y)}{ \vert y \vert ^{n-\alpha }}\,dy \\ &\leq C \int _{R}^{\infty }r^{(\alpha -n)(p-1)+\alpha -1}\,dr \\ &=CR^{(\alpha -n)(p-1)+\alpha }< \epsilon , \end{aligned}$$
(3.7)

where \(R>0\) is large enough, \(q\rightarrow (q_{\alpha })^{-}\), \(z\in \widehat{\varOmega }\). Since \(\beta < n\), by using the same argument as above, we also have

$$ \biggl\vert \lambda \mu _{q}^{\beta } \int _{\varOmega _{\mu }\cap B(0,R)} \frac{G(\mu _{q}z+x_{q})h_{q}^{p-1}(y)G(\mu _{q}y +x_{q})}{ \vert z-y \vert ^{n-\alpha -\beta }}\,dy \biggr\vert < \epsilon , $$
(3.8)

when \(R>0\) large enough, \(q\rightarrow (q_{\alpha })^{-}\).

On the other hand, it is easy to see that, for \(z\in \widehat{\varOmega }\), \(\int _{\varOmega _{\mu }\cap B(0,R)} \frac{K(\mu _{q}z+x_{q})h_{q}^{p-1}(y)K(\mu _{q}y+x_{q})}{ \vert z-y \vert ^{n-\alpha }}\,dy \in C^{1}(\widehat{\varOmega })\). Combining this with (3.7) and (3.8), we conclude that \(h_{q}(z)\) is equicontinuous in any bounded domain \(\widehat{\varOmega }\subset \mathbb{R}^{n}\) as \(q\rightarrow (q_{\alpha })^{-}\).

When \(q\rightarrow (q_{\alpha })^{-}\), we distinguish two cases:

Case 1.\(\varOmega _{\mu }\rightarrow \mathbb{R}^{n}_{T}:=\{(z_{1},z_{2},\ldots,z_{n})\mid z_{n}>-T\}\) for some \(T\ge 0\), and \(h_{q}(z)\rightarrow h(z)\in C(\mathbb{R}^{n}_{T})\) holds uniformly on any compact sets of \(\mathbb{R}^{n}_{T}\), where \(h(z)\) satisfying

$$ Q_{\lambda }h(z)=K^{2}(\widetilde{x}) \int _{\mathbb{R}^{n}_{T}} \frac{h^{p_{\alpha }-1}(y)}{ \vert z-y \vert ^{n-\alpha }}\,dy, \quad h(0)=1. $$

Then, similar to Lemma 4.3 in [1], we obtain a contradiction.

Case 2.\(\varOmega _{\mu }\rightarrow \mathbb{R}^{n}\), \(h_{q}(z)\rightarrow h(z)\in C(\mathbb{R}^{n})\) holds uniformly on any compact sets of \(\mathbb{R}^{n}\), where \(h(z)\) satisfying

$$ Q_{\lambda }h(z)=K^{2}(\widetilde{x}) \int _{\mathbb{R}^{n}} \frac{h^{p_{\alpha }-1}(y)}{ \vert z-y \vert ^{n-\alpha }}\,dy, \quad h(0)=1. $$

Again similar to Lemma 4.3 in [1], we obtain a contradiction.

Thus we conclude that there exists \(C>0\) such that \(f_{q}(y)\leq C\) uniformly for \(y\in \overline{\varOmega }\), \(q\in (0,q_{\alpha })\).

On the other hand, if \(\min_{\overline{\varOmega }}f_{q}(x):=f_{q}(\widetilde{x}_{q}) \rightarrow 0\) as \(q\rightarrow (q_{\alpha })^{-}\). Then

$$ \infty \leftarrow f_{q}^{q-1}(\widetilde{x}_{q})= \int _{\varOmega } \frac{K(\widetilde{x}_{q})f_{q}(y)K(y)}{ \vert \widetilde{x}_{q}-y \vert ^{n-\alpha }}\,dy+ \lambda \int _{\varOmega } \frac{G(\widetilde{x}_{q})f_{q}(y)G(y)}{ \vert \widetilde{x}_{q}-y \vert ^{n-\alpha -\beta }}\,dy \leq C< \infty , $$

as \(q\rightarrow (q_{\alpha })^{-}\), which implies a contradiction. □

Proof of Proposition 3.5

By Lemma 3.6, \(\{f_{q}\}\) are uniformly bounded above and bounded below by a positive constant. Thus the \(\{f_{q}\}\) are equicontinuous due to Eq. (3.4). It follows that \(f_{q}\rightarrow f_{*}\) as \(q\rightarrow (q_{\alpha })^{-}\) in \(C(\overline{\varOmega })\), and \(f_{*}\) is the energy minimizer for \(Q_{\lambda }\). □

Proof of Theorem 1.1 (ii)

Lemma 3.4 and Proposition 3.5 imply the existence of a positive solution \(f\in L^{q_{\alpha }}(\varOmega )\cap C(\overline{\varOmega })\) to Eq. (1.1) for \(q=\frac{2n}{n+\alpha }\), \(\lambda \in (- \frac{K^{2}(x_{*})}{d^{\beta }(\varOmega )G^{2}(\tilde{x}_{*})},0)\). It is also easy to see that \(f\in C^{1}(\overline{\varOmega })\). □

3.3 Nonexistence—critical and supercritical case

We first state a Pohozaev type identity.

Lemma 3.7

Assume that the origin is inΩand the domain is star-shaped with respect to the origin. If\(u\in C^{1}(\overline{\varOmega })\)is a nonnegative solution to

$$ u(x)= \int _{\varOmega }\frac{K(x)u^{p-1}(y)K(y)}{ \vert x-y \vert ^{n-\alpha }}\,dy+ \lambda \int _{\varOmega } \frac{G(x)u^{p-1}(y)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dy, \quad x\in\overline{ \varOmega }, $$

where\(p\neq 0\), \(\lambda \in \mathbb{R}\), \(K(x),G(x)\in C^{1}( \overline{\varOmega })\), then

$$\begin{aligned} & \biggl(\frac{n}{p}+\frac{\alpha -n}{2}\biggr) \int _{\varOmega }u^{p}(x)\,dx \\ &\quad =-\frac{\lambda \beta }{2} \int _{\varOmega } \int _{\varOmega } \frac{G(x)u^{p-1}(x)u^{p-1}(y)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dy\,dx+ \frac{1}{p} \int _{\partial \varOmega }(x\cdot \nu )u^{p}(x)\,d\sigma \\ & \quad\quad{} - \int _{\varOmega } \int _{\varOmega } \frac{(x,\nabla K(x))u^{p-1}(x)u^{p-1}(y)K(y)}{ \vert x-y \vert ^{n-\alpha }}\,dy\,dx \\ & \quad\quad{} - \lambda \int _{\varOmega } \int _{\varOmega } \frac{(x,\nabla G(x))u^{p-1}(x)u^{p-1}(y)G(y)}{ \vert x-y \vert ^{n-\alpha -\beta }}\,dy\,dx, \end{aligned}$$

whereνis the outward unit normal vector to∂Ω.

Proof

The argument is standard. We omit it here. □

Proof of Theorem 1.1(iii)

We can prove by using Lemma 3.7 and a similar argument to that used in [1]. We omit it here. □