1 Introduction

Letting Ω be a bounded domain with a smooth boundary ∂Ω in the Euclidean space \(\mathbb{R}^{n}\), we consider the Neumann problem of the Laplacian Δ as follows:

$$ \textstyle\begin{cases} \Delta u=\mu u,& \mbox{in } \varOmega , \\ \frac{\partial u}{\partial \nu }=0, & \mbox{on } \partial \varOmega , \end{cases} $$
(1.1)

where ν is the outward unit normal to the boundary. It is well known that the free membrane problem (1.1) has a discrete spectrum consisting of a sequence

$$ 0=\mu _{0}< \mu _{1}\leq \mu _{2}\leq \cdots \rightarrow +\infty . $$

When Ω is a bounded domain in \(\mathbb{R}^{2}\), Szegö [6] proved the following classical isoperimetric inequality:

$$ \mu _{1}(\varOmega )\leq \mu _{1}(B_{\varOmega }), $$
(1.2)

where \(B_{\varOmega }\) is the ball of same volume as Ω. Weinberger [11] generalized this result to n-dimensions. Ashbaugh and Benguria [2] extended the Szegö–Weinberger inequality (1.2) to the bounded domains in hyperbolic space and a hemisphere. On the other hand, Ashbaugh and Benguria [1] conjectured that

$$ \sum_{i=1}^{n} \frac{1}{\mu _{i}(\varOmega )}\geq \frac{n}{\mu _{1}(B_{\varOmega })}, \quad \text{with equality if and only if } \varOmega \text{ is a ball}, $$
(1.3)

where \(\mu _{i}(\varOmega )\) is the ith Neumann eigenvalue on Ω, \(\mu _{1}(B_{\varOmega })\) is the first nonzero Neumann eigenvalue on \(B_{\varOmega }\). In [10], Wang and Xia proved an isoperimetric inequality for the sums of the reciprocals of the first \((n-1)\) nonzero eigenvalues of the Neumann Laplacian on bounded domains in \(\mathbb{R}^{n}\) as follows:

$$ \sum_{i=1}^{n-1} \frac{1}{\mu _{i}(\varOmega )}\geq \frac{n-1}{\mu _{1}(B_{\varOmega })}, \quad \text{with equality if and only if } \varOmega \text{ is a ball}, $$
(1.4)

which means the Ashbaugh–Benguria’s conjecture is true for the first \((n-1)\) nonzero eigenvalues of the Neumann Laplacian on bounded domains in \(\mathbb{R}^{n}\). So (1.4) supports the above conjectures of Ashbaugh and Benguria. On the other hand, Benguria, et al. [3] proved a result which is similar to (1.4) for the first \((n-1)\) nontrivial Neumann eigenvalues on domains in a hemisphere of \(S^{n}\). Moreover, some works on eigenvalues are related to the spectra of matrix operators and can be seen in [79].

Let Δ and Δ̅ be the Laplace–Beltrami operators on Ω and ∂Ω, respectively. Let ∇ and ∇̅ be the gradient operators on Ω and ∂Ω, respectively. Consider the following Neumann eigenvalue problem of the bi-harmonic operator:

$$ \textstyle\begin{cases} \Delta ^{2} u-\tau \Delta u=\varLambda u & \mbox{in } \varOmega , \\ \frac{\partial ^{2}u}{\partial \nu ^{2}}=0, & \mbox{on } \partial \varOmega , \\ \tau \frac{\partial u}{\partial \nu }-\operatorname{div}_{\partial \varOmega } (\nabla ^{2} u(\nu ) )-\frac{\partial \Delta u}{\partial \nu }=0, & \mbox{on } \partial \varOmega , \end{cases} $$
(1.5)

where \(\tau \geq 0\) and σ are two constants, \(\operatorname{div}_{\partial \varOmega }\) denotes the tangential divergence operator on ∂Ω, and \(\nabla ^{2} u\) is the Hessian of u, ν is the outward unit normal to the boundary. In this setting, problem (1.5) has a discrete spectrum, and all eigenvalues in the discrete spectrum can be listed nondecreasingly as follows:

$$ 0=\varLambda _{0}< \varLambda _{1}\leq \varLambda _{2}\leq \cdots \uparrow + \infty . $$

By the Rayleigh–Ritz characterization, the \((k+1)\)th eigenvalue of (1.5) can be given as follows (see, e.g., [5]):

$$ \varLambda _{k+1}= \inf_{u\in H^{2}(\varOmega )} \biggl\{ Q[u]= \frac{\int _{\varOmega } [ \vert \nabla ^{2} u \vert ^{2}+\tau \vert \nabla u \vert ^{2} ]\,dx}{\int _{\varOmega }u^{2}\,dx} {\Big|} \int _{\varOmega }u u_{j} =0, j=1,\dots ,k \biggr\} . $$
(1.6)

Letting \(B_{\varOmega }\) be the ball of same volume as Ω, Chasman [5] proved the following isoperimetric inequality:

$$ \varLambda _{1}(\varOmega )\leq \varLambda _{1}(B_{\varOmega }), \quad \text{with equality if and only if } \varOmega \text{ is a ball}. $$

Chasman [5] also conjectured that

$$ \sum_{i=1}^{n} \frac{1}{\varLambda _{i}(\varOmega )}\geq \frac{n}{\varLambda _{1}(B_{\varOmega })},\quad \text{with equality if and only if } \varOmega \text{ is a ball}. $$
(1.7)

In this paper, we prove an isoperimetric inequality for the sums of the reciprocals of the first \((n-1)\) nonzero eigenvalues of the fourth Neumann Laplacian which supports the Chasman’s conjecture, actually, we get

$$ \sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )}\geq \frac{n-1}{\varLambda _{1}(B_{\varOmega })},\quad \text{with equality if and only if } \varOmega \text{ is a ball}. $$
(1.8)

In [4], Buoso et al. proved a quantitative isoperimetric inequality for the fundamental tone of problem (1.5) as follows:

$$ \varLambda _{1}(\varOmega )\leq \bigl(1-\eta _{n,\tau ,|\varOmega |}A^{2}(\varOmega )\bigr) \varLambda _{1}(B_{\varOmega }),$$
(1.9)

where \(\eta _{n,\tau ,|\varOmega |}>0\), and \(A(\varOmega )\) is the so-called Fraenkel asymmetry of the domain \(\varOmega \in \mathbb{R}^{n}\), which is defined by:

$$ A(\varOmega ):=\mathrm{inf} \biggl\{ \frac{ \vert \varOmega \Delta B_{\varOmega } \vert }{ \vert \varOmega \vert } \biggr\} , $$

where \(B_{\varOmega }\) is the ball of same volume as Ω and \(\varOmega \Delta B_{\varOmega }\) is the symmetric difference of Ω and \(B_{\varOmega }\). In what follows, we generalize (1.9) to the sum of the first \((n-1)\) eigenvalues, and we get

$$ \frac{1}{n-1}\sum _{i=1}^{n-1}\varLambda _{i}(\varOmega )\leq \bigl(1-\eta _{n, \tau ,|\varOmega |}A^{2}(\varOmega )\bigr)\varLambda _{1}(B_{\varOmega }). $$
(1.10)

2 Preliminaries

In this section, we recall some notations and results, more details can be seen in [4, 5].

Let \(j_{1}\), \(i_{1}\) be the ultraspherical and modified ultraspherical Bessel functions of the first kind and order 1, respectively; \(j_{1}\), \(i_{1}\) can be expressed by the standard Bessel and modified Bessel functions of the first kind \(J_{\nu }\), \(I_{\nu }\) as follows:

$$ j_{1}(z)=z^{1-n/2}J_{n/2}(z),\qquad i_{1}(z)=z^{1-n/2}I_{n/2}(z). $$

Let B be the unit ball in \(\mathbb{R}^{n}\) centered at the origin and \(\omega _{n}\) be the Lebesgue measure \(|B|\) of B, and let \(\varLambda _{1}(B)\) be the first eigenvalue of problem (1.5) on unit ball B. For \(\tau >0\), a, b are positive constants satisfying the conditions \(a^{2}b^{2}=\lambda _{1}(B)\) and \(b^{2}-a^{2}=\tau \). Set

$$ R(r)=j_{1}(ar)+\gamma i_{1}(br),\quad \gamma = \frac{-a^{2}j''_{1}(ar)}{b^{2}i''_{1}(b)}>0. $$

Then we define the function \(\rho :[0,+\infty )\rightarrow [0,+\infty )\) as

$$ \rho (r)= \textstyle\begin{cases} R(r),& r\in [0,1), \\ R(1)+(r-1)R'(1),& r\in [1,+\infty ). \end{cases} $$

Let \(u_{i}:\mathbb{R}^{n}\rightarrow \mathbb{R}\) be defined by

$$ u_{i}(x):=\rho \bigl( \vert x \vert \bigr)\frac{x_{i}}{ \vert x \vert },\quad \text{for } i=1,\dots , n. $$
(2.1)

The functions \(u_{i}|_{B}\) are, in fact, the eigenfunctions associated with the eigenvalues \(\lambda _{1}(B)\) of problem (1.5) on unit ball B. We know that \(\lambda _{1}(B)\) has multiplicity and \(u_{i}\) satisfy

$$\begin{aligned}& \sum_{i=1}^{n} \vert u_{i} \vert ^{2}=\rho ^{2}\bigl( \vert x \vert \bigr), \end{aligned}$$
(2.2)
$$\begin{aligned}& \sum_{i=1}^{n} \vert \nabla u_{i} \vert ^{2}=\frac{n-1}{ \vert x \vert ^{2}}\rho \bigl( \vert x \vert \bigr)^{2}+\bigl( \rho '\bigl( \vert x \vert \bigr)\bigr)^{2}, \end{aligned}$$
(2.3)
$$\begin{aligned}& \sum_{i=1}^{n} \bigl\vert \nabla ^{2} u_{i} \bigr\vert ^{2}=\bigl(\rho ''\bigl( \vert x \vert \bigr) \bigr)^{2}+ \frac{3(n-1)}{ \vert x \vert ^{4}}\bigl[\rho \bigl( \vert x \vert \bigr)- \vert x \vert \rho '\bigl( \vert x \vert \bigr) \bigr]^{2}. \end{aligned}$$
(2.4)

Define \(N[\rho ]=\sum_{i=1}^{n} (|\nabla ^{2} u_{i}|^{2}+\tau |\nabla u_{i}|^{2} )\). Then ρ and \(N[\rho ]\) satisfy the following properties which given in [4, 5].

Lemma 2.1

Function ρ and \(N[\rho ]\)satisfy the following properties:

  1. (1)

    \(\rho ''(r)<0\)for all \(r\geq 0\), therefore \(\rho '\)is nonincreasing.

  2. (2)

    \(\rho (r)-r\rho '(r)\geq 0\), with equality holding only for \(r=0\).

  3. (3)

    The function \(\rho ^{2}(r)\)is strictly increasing.

  4. (4)

    The function \(\rho ^{2}(r)/r^{2}\)is decreasing.

  5. (5)

    The function \(3(\rho (r)-r\rho '(r))^{2}/r^{4}+\tau \rho ^{2}(r)/r^{2}\)is decreasing.

  6. (6)

    \(N[\rho (r_{1})]>N[\rho (r_{2})]\)for any \(r_{1}\in [0,1)\), \(r_{2}\in [1,+\infty )\).

  7. (7)

    For all \(r\geq 0\), we have

    $$ N\bigl[\rho (r)\bigr]=\bigl(\rho ''(r) \bigr)^{2}+ \frac{3(n-1)(\rho (r)-r\rho '(r))^{2}}{r^{4}}+\tau (n-1) \frac{\rho ^{2}(r)}{r^{2}}+ \tau \bigl(\rho '(r)\bigr)^{2}. $$
  8. (8)

    For all \(r\geq 1\), \(N[\rho (r)]\)is decreasing.

We introduce the notation of a partially monotonic function. A function F is partially monotonic on Ω if it satisfies

$$ F(x)>F(y), \quad \text{for all } x\in \varOmega \text{ and } y\notin \varOmega . $$
(2.5)

It is seen that \(N[\rho (r)]\) is a partially monotonic function from Lemma 2.1.

Lemma 2.2

For any radial function \(F(r(x))\)that satisfies the partially monotonicity condition on \(B_{\varOmega }\),

$$ \int _{\varOmega }F \,dx\leq \int _{B_{\varOmega }}F \,dx $$
(2.6)

with equality if and only if \(\varOmega =B_{\varOmega }\). For any strictly increasing radial function \(F(r(x))\),

$$ \int _{\varOmega }F \,dx\geq \int _{B_{\varOmega }}F \,dx $$
(2.7)

with equality if and only if \(\varOmega =B_{\varOmega }\).

Lemma 2.3

For all \(s>0\), we have

$$ \varLambda _{i}(\tau ,\varOmega )=s^{4}\varLambda _{i}\bigl(s^{-2}\tau ,s\varOmega \bigr),\quad i=1,\dots ,n,$$
(2.8)

where \(s\varOmega =\{x\in \mathbb{R}^{n}: x/s\in \varOmega \}\)for \(s>0\).

Proof

For any \(u\in H^{2}(\varOmega )\) with

$$\begin{aligned} u\neq 0 \quad \text{and}\quad \int _{\varOmega }u \,dx= \int _{\varOmega }u u_{1}\,dx= \cdots = \int _{\varOmega }u u_{i-1}\,dx=0,\quad i=1,\dots ,n, \end{aligned}$$

let \(\tilde{u}(x)=u(x/s)\), then ũ is a valid trial function on and so

$$\begin{aligned} Q_{s^{-2}\tau ,s\varOmega }[\tilde{u}] =&\frac{\int _{s\varOmega } ( \vert \nabla ^{2} \tilde{u} \vert ^{2}+s^{-2}\tau \vert \nabla \tilde{u} \vert ^{2} )\,dx}{\int _{s\varOmega } u^{2}\,dx} \\ =&\frac{\int _{s\varOmega } ( \vert s^{-2}(\nabla ^{2} u)(x/s) \vert ^{2}+s^{-2}\tau \vert s^{-1}(\nabla u)(x/s) \vert ^{2} )\,dx}{\int _{s\varOmega } u(x/s)^{2}\,dx} \\ =&\frac{s^{-4+n}\int _{\varOmega } ( \vert (\nabla ^{2} u) \vert ^{2}+\tau \vert (\nabla u) \vert ^{2} )\,dy}{s^{n}\int _{\varOmega } u^{2}\,dy} \quad ( \text{substituting } y=x/s) \\ =&s^{-4}Q_{\tau ,\varOmega }[u]. \end{aligned}$$
(2.9)

The lemma follows from (1.6). □

3 Proofs of the main results

In this section, we give the proofs of the main results of this paper.

Theorem 3.1

Let Ω be a bounded domain in an n-dimensional Euclidean space \(\mathbb{R}^{n}\)and let \(B_{\varOmega }\)be the ball of same volume as Ω, then the first \((n-1)\)eigenvalues of (1.5) in Ω satisfy

$$ \sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )}\geq \frac{n-1}{\varLambda _{1}(B_{\varOmega })}, $$
(3.1)

with equality if and only if Ω is a ball.

Proof

Assume that the volume of Ω is equal to that of the unit ball B. Letting \(\varphi _{i}=\frac{\rho (r)x_{i}}{r}\), we know that

$$ \int _{\varOmega }\varphi _{i}(r)\,dx=0, \quad \text{for } i=1,\dots ,n, $$

which means \(\varphi _{i}\) is perpendicular to \(u_{0}=1/\sqrt{|\varOmega |}\), which is the first eigenfunction of (1.5). Letting \(\{u_{j}\}_{j=0}^{\infty }\) be an orthonormal set of eigenfunctions of (1.5) on Ω, next we will show that there exists new coordinate functions \(\{x_{i}'\}_{i=1}^{n}\) such that

$$ \int _{\varOmega }\frac{\rho (r)x_{i}'}{r}u_{j} \,dx=0, $$
(3.2)

for \(j=1,\dots ,i-1\) and \(i=2,\dots , n\). To see this, we define an \(n \times n\) matrix \(A= (a_{ij} )\), where \(a_{ji}= \int _{\varOmega }\varphi _{i}u_{j}\,dx=\int _{\varOmega } \frac{\rho (r)}{r}x_{i}u_{j}\,dx\), for \(i,j=1,2,\dots ,n\). Using the orthogonalization of Gram and Schmidt (QR-factorization theorem), we know that there exist an upper-triangular matrix \(T=(T_{ji})\) and an orthogonal matrix \(B=(b_{ji})\) such that \(T=UQ\), i.e.,

$$ T_{ij}=\sum_{k=1}^{n} b_{ik}a_{kj}= \int _{\varOmega }\sum_{k=1}^{n} \frac{\rho (r)}{r}b_{ik}x_{k}u_{j}\,dx =0,\quad 1\leq j< i\leq n. $$

Letting \(x_{i}'=\sum_{k=1}^{n} b_{ik}x_{k}\), \(i=1,\dots ,n\), we get (3.2). Since \(B=(b_{ji})\) is an orthogonal matrix, \(\{x_{i}'\}_{i=1}^{n}\) is also a set of coordinate functions. Therefore, denoting \(x_{i}'\), \(i=1\dots ,n\) still by \(x_{i}\), \(i=1\dots ,n\), and \(\varphi _{i}= \frac{\rho (r)}{r}x_{i}\), we have

$$ \varphi _{i}\neq 0 \quad \text{and}\quad \int _{\varOmega }\varphi _{i}\,dx= \int _{ \varOmega }\varphi _{i} u_{1}\,dx= \cdots = \int _{\varOmega }\varphi _{i} u_{i-1}\,dx=0,\quad i=1,\dots ,n. $$

It follows from the Rayleigh–Ritz inequality that

$$ \varLambda _{i}(\varOmega ) \int _{\varOmega }\varphi _{i}^{2} \,dx\leq \int _{ \varOmega } \bigl( \bigl\vert \nabla ^{2} \varphi _{i} \bigr\vert ^{2}+\tau \vert \nabla \varphi _{i} \vert ^{2} \bigr)\,dx,\quad i=1,\dots ,n, $$
(3.3)

which implies that

$$ \int _{\varOmega }\varphi _{i}^{2} \,dx\leq \frac{1}{\varLambda _{i}(\varOmega )} \int _{\varOmega } \bigl( \bigl\vert \nabla ^{2} \varphi _{i} \bigr\vert ^{2}+\tau \vert \nabla \varphi _{i} \vert ^{2} \bigr)\,dx, \quad i=1, \dots ,n. $$
(3.4)

Summing over i from 1 to n, we have

$$ \sum_{i=1}^{n} \int _{\varOmega }\varphi _{i}^{2} \,dx\leq \sum_{i=1}^{n} \frac{1}{\varLambda _{i}(\varOmega )} \int _{\varOmega } \bigl( \bigl\vert \nabla ^{2} \varphi _{i} \bigr\vert ^{2}+\tau \vert \nabla \varphi _{i} \vert ^{2} \bigr)\,dx. $$
(3.5)

Since \(\sum_{i=1}^{n}|\nabla ^{2}\varphi _{i}|^{2}=(\rho '')^{2}+ \frac{3(n-1)}{r^{4}}(\rho -r\rho ')^{2}\), for any point \(p\in \varOmega \), by a transformation of coordinates if necessary, we have \(|\nabla ^{2}\varphi _{i}|^{2}\leq \frac{(\rho '')^{2}}{n-1}+ \frac{3}{r^{4}}(\rho -r\rho ')^{2}\), \(i=1,\dots ,n \). Then

$$\begin{aligned}& \sum_{i=1}^{n} \frac{1}{\varLambda _{i}(\varOmega )} \bigl\vert \nabla ^{2}\varphi _{i} \bigr\vert ^{2} \\& \quad = \sum _{i=1}^{n-1}\frac{1}{\varLambda _{i}(\varOmega )} \bigl\vert \nabla ^{2}\varphi _{i} \bigr\vert ^{2} + \frac{1}{\varLambda _{n}(\varOmega )} \bigl\vert \nabla ^{2}\varphi _{i} \bigr\vert ^{2} \\& \quad = \sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )} \bigl\vert \nabla ^{2} \varphi _{i} \bigr\vert ^{2}+\frac{1}{\varLambda _{n}(\varOmega )} \Biggl( \bigl(\rho ''\bigr)^{2} + \frac{3(n-1)}{r^{4}}\bigl(\rho -r\rho '\bigr)^{2}-\sum _{j=1}^{n-1} \bigl\vert \nabla ^{2} \varphi _{j} \bigr\vert ^{2} \Biggr) \\& \quad \leq \sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )} \bigl\vert \nabla ^{2} \varphi _{i} \bigr\vert ^{2} +\sum _{j=1}^{n-1}\frac{1}{\varLambda _{j}(\varOmega )} \biggl( \frac{(\rho '')^{2}+\frac{3(n-1)}{r^{4}}(\rho -r\rho ')^{2}}{n-1}- \bigl\vert \nabla ^{2}\varphi _{j} \bigr\vert ^{2} \biggr) \\& \quad = \frac{1}{n-1} \biggl(\bigl(\rho '' \bigr)^{2}+\frac{3(n-1)}{r^{4}}\bigl(\rho -r \rho ' \bigr)^{2} \biggr)\sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )}. \end{aligned}$$
(3.6)

Similarly, we have

$$\begin{aligned} \sum_{i=1}^{n} \frac{1}{\varLambda _{i}(\varOmega )} \vert \nabla \varphi _{i} \vert ^{2} =&\sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )} \vert \nabla \varphi _{i} \vert ^{2}+ \frac{1}{\varLambda _{n}(\varOmega )} \vert \nabla \varphi _{i} \vert ^{2} \\ =&\sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )} \vert \nabla \varphi _{i} \vert ^{2} +\frac{1}{\varLambda _{n}(\varOmega )} \Biggl(\frac{n-1}{r^{2}}\rho ^{2}+\bigl( \rho '\bigr)^{2}-\sum _{j=1}^{n-1} \vert \nabla \varphi _{j} \vert ^{2} \Biggr) \\ \leq &\sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )} \vert \nabla \varphi _{i} \vert ^{2} +\sum_{j=1}^{n-1} \frac{1}{\varLambda _{j}(\varOmega )} \biggl(\frac{\frac{n-1}{r^{2}}\rho ^{2}+(\rho ')^{2}}{n-1}- \vert \nabla \varphi _{j} \vert ^{2} \biggr) \\ =&\frac{1}{n-1} \biggl(\frac{n-1}{r^{2}}\rho ^{2}+ \bigl(\rho '\bigr)^{2} \biggr) \sum _{i=1}^{n-1}\frac{1}{\varLambda _{i}(\varOmega )}. \end{aligned}$$
(3.7)

On the other hand,

$$ \sum_{i=1}^{n} \vert \varphi _{i} \vert ^{2}=\rho ^{2}. $$
(3.8)

Substituting (3.6)–(3.8) into (3.5), we have

$$\begin{aligned} \frac{1}{n-1}\sum _{i=1}^{n-1}\frac{1}{\varLambda _{i}(\varOmega )} \geq & \frac{\int _{\varOmega }\rho ^{2}\,dx}{\int _{\varOmega } ((\rho '')^{2}+\frac{3(n-1)}{r^{4}}(\rho -r\rho ')^{2}+\tau (\frac{n-1}{r^{2}}\rho ^{2}+(\rho ')^{2} ) )\,dx} \\ =&\frac{\int _{\varOmega }\rho ^{2}\,dx}{\int _{\varOmega }N[\rho ]\,dx}\geq \frac{\int _{B_{\varOmega }} \rho ^{2}\,dx}{\int _{B_{\varOmega }} N[\rho ]\,dx}= \frac{1}{\varLambda _{1}(B_{\varOmega })}, \end{aligned}$$
(3.9)

the last step is deduced by Lemma 2.2. If the equality holds, then equality holds in (3.9), which implies Ω must be a unit ball. By Lemma 2.3, for any domain Ω in \(\mathbb{R}^{n}\), we get

$$ \frac{1}{n-1}\sum_{i=1}^{n-1} \frac{1}{\varLambda _{i}(\varOmega )}\geq \frac{1}{\varLambda _{1}(B_{\varOmega })}. $$
(3.10)

This completes the proof of Theorem 3.1. □

Theorem 3.2

Let Ω be a bounded domain in an n-dimensional Euclidean space \(\mathbb{R}^{n}\)and let \(B_{\varOmega }\)be the ball of same volume as Ω, then the first \((n-1)\)eigenvalues of (1.5) in Ω satisfy

$$ \frac{1}{n-1}\sum _{i=1}^{n-1}\varLambda _{i}(\varOmega )\leq \bigl(1-\eta _{n, \tau ,|\varOmega |}A^{2}(\varOmega )\bigr)\varLambda _{1}(B_{\varOmega }). $$
(3.11)

Proof

Case 1. Ω is a bounded domain in \(\mathbb{R}^{n}\) of class \(C^{1}\) with the same measure as the unit ball B. By a similar argument as in the proof of Theorem 3.1, we have

$$ \varLambda _{i}(\varOmega ) \int _{\varOmega }\varphi _{i}^{2} \,dx\leq \int _{ \varOmega } \bigl( \bigl\vert \nabla ^{2} \varphi _{i} \bigr\vert ^{2}+\tau \vert \nabla \varphi _{i} \vert ^{2} \bigr)\,dx,\quad i=1,\dots ,n. $$
(3.12)

Summing over i from 1 to n, we have

$$ \sum_{i=1}^{n} \varLambda _{i}(\varOmega ) \int _{\varOmega }\varphi _{i}^{2} \,dx \leq \sum_{i=1}^{n} \int _{\varOmega } \bigl( \bigl\vert \nabla ^{2} \varphi _{i} \bigr\vert ^{2}+ \tau \vert \nabla \varphi _{i} \vert ^{2} \bigr)\,dx= \int _{\varOmega }N[\rho ]\,dx. $$
(3.13)

Since \(\sum_{i=1}^{n}\varphi _{i}^{2}=\rho ^{2}\), for any point \(p\in \varOmega \), by a transformation of coordinates if necessary, we have \(\varphi _{i}^{2}\leq \frac{\rho ^{2}}{n-1}\), \(i=1,\dots ,n\). Then

$$\begin{aligned} \sum _{i=1}^{n}\varLambda _{i}(\varOmega ) \varphi _{i}^{2} =&\sum_{i=1}^{n-1} \varLambda _{i}(\varOmega )\varphi _{i}^{2}+ \varLambda _{n}(\varOmega )\varphi _{n}^{2} \\ =&\sum_{i=1}^{n-1}\varLambda _{i}(\varOmega )\varphi _{i}^{2}+\varLambda _{n}( \varOmega ) \Biggl(\rho ^{2}-\sum _{j=1}^{n-1}\varphi _{j}^{2} \Biggr) \\ \geq &\sum_{i=1}^{n-1}\varLambda _{i}(\varOmega )\varphi _{i}^{2}+\sum _{j=1}^{n-1} \varLambda _{j} \biggl( \frac{\rho ^{2}}{n-1}-\varphi _{j}^{2} \biggr) \\ =&\sum_{i=1}^{n-1}\varLambda _{i}\frac{\rho ^{2}}{n-1}. \end{aligned}$$
(3.14)

Substituting (3.13) into (3.14), we have

$$ \frac{1}{n-1}\sum _{i=1}^{n-1}\varLambda _{i}(\varOmega )\leq \frac{\int _{\varOmega }N[\rho ]\,dx}{\int _{\varOmega }\rho ^{2}\,dx}. $$
(3.15)

On the other hand, we have

$$ \varLambda _{1}(B)=\frac{\int _{B} N[\rho ]\,dx}{\int _{B}\rho ^{2}\,dx}. $$
(3.16)

Combining (3.15) and (3.16), we have

$$ \varLambda _{1}(B) \int _{B}\rho ^{2}\,dx-\frac{1}{n-1}\sum _{i=1}^{n-1} \varLambda _{i}( \varOmega ) \int _{\varOmega }\rho ^{2}\,dx\geq \int _{B} N[\rho ]\,dx- \int _{\varOmega }N[\rho ]\,dx. $$
(3.17)

From equation (16) in [4], we know that

$$ \varLambda _{1}(B) \int _{B}\rho ^{2}\,dx-\varLambda _{1}( \varOmega ) \int _{ \varOmega }\rho ^{2}\,dx\leq C_{n,\tau }^{(1)} \bigl(\varLambda _{1}(B)-\varLambda _{1}( \varOmega )\bigr), $$

where \(C_{n,\tau }^{(1)}=n\omega _{n}\int _{0}^{1}\rho ^{2}(r)r^{n-1}\,dr\). Then we have

$$ \varLambda _{1}(B) \int _{B}\rho ^{2}\,dx-\frac{1}{n-1}\sum _{i=1}^{n-1} \varLambda _{i}( \varOmega ) \int _{\varOmega }\rho ^{2}\,dx\leq C_{n,\tau }^{(1)} \Biggl(\varLambda _{1}(B)-\frac{1}{n-1}\sum _{i=1}^{n-1}\varLambda _{i}( \varOmega ) \Biggr). $$
(3.18)

From (15) and (20) in [4], we know that

$$ \varLambda _{1}(B) \int _{B}\rho ^{2}\,dx-\varLambda _{1}( \varOmega ) \int _{ \varOmega }\rho ^{2}\,dx\geq \int _{B/B_{1}}N(\rho )\,dx- \int _{B_{2}/B}N( \rho )\,dx, $$

and

$$ \int _{B/B_{1}}N(\rho )\,dx- \int _{B_{2}/B}N(\rho )\,dx=C_{n,\tau }^{(2)} \alpha ^{2}, $$

where \(B_{1}\) and \(B_{2}\) are two balls centered at the origin with radii \(r_{1}\), \(r_{2}\) such that \(|\varOmega \cap B|=|B_{1}|=\omega _{n} r_{1}^{n}\) and \(|\varOmega /B|=|B_{2}/B|=\omega _{n} (r_{2}^{n}-1)\). Then we have

$$ \int _{B} N[\rho ]\,dx- \int _{\varOmega }N[\rho ]\,dx\geq C_{n,\tau }^{(2)} \frac{ \vert \varOmega \Delta B \vert }{ \vert \varOmega \vert }, $$
(3.19)

where \(C_{n,\tau }^{(2)}=n\omega _{n} ((3+\tau )(R(1)-R'(1))^{2}+2\tau R'(1)(R(1)-R'(1)) )c_{n}\).

Combining (3.18) and (3.19), we have

$$ \varLambda _{1}(B)-\frac{1}{n-1}\sum _{i=1}^{n-1}\varLambda _{i}( \varOmega )\geq \frac{C_{n,\tau }^{(2)}}{C_{n,\tau }^{(1)}}A^{2}(\varOmega ), $$

which implies that

$$ \frac{1}{n-1}\sum _{i=1}^{n-1}\varLambda _{i}(\varOmega )\leq \varLambda _{1}(B) \biggl(1-\frac{C_{n,\tau }^{(2)}}{\varLambda _{1}(B)C_{n,\tau }^{(1)}}A^{2}( \varOmega ) \biggr) .$$
(3.20)

Case 2. Ω is the generic domain in \(\mathbb{R}^{n}\) of class \(C^{1}\). Since

$$ \varLambda _{i}(\tau ,\varOmega )=s^{4}\varLambda _{i}\bigl(s^{-2}\tau ,s\varOmega \bigr),\quad i=1,\dots ,n, $$
(3.21)

for all \(s>0\). Taking \(s=(\omega _{n}/|\varOmega |)^{\frac{1}{n}}\), for any domain Ω in \(\mathbb{R}^{n}\) of class \(C^{1}\), we infer from (3.21) that

$$\begin{aligned} \frac{1}{n-1}\sum_{i=1}^{n-1} \varLambda _{i}(\tau ,\varOmega ) =&s^{4} \frac{1}{n-1} \sum_{i=1}^{n-1}\varLambda _{i} \bigl(s^{-2}\tau ,s\varOmega \bigr) \\ \leq &s^{4}\varLambda _{1}\bigl(s^{-2}\tau ,B \bigr) \biggl(1- \frac{C_{n,s^{-2}\tau }^{(2)}}{\varLambda _{1}(s^{-2}\tau ,B) C_{n,s^{-2}\tau }^{(1)}}A^{2}(s \varOmega ) \biggr) \\ =&\varLambda _{1}\bigl(s^{-2}\tau ,B\bigr) \biggl(1- \frac{C_{n,s^{-2}\tau }^{(2)}}{\varLambda _{1}(s^{-2}\tau ,B)C_{n,s^{-2}\tau }^{(1)}} A^{2}( \varOmega ) \biggr). \end{aligned}$$

Setting \(\eta _{n,\tau ,|\varOmega |}= \frac{C_{n,s^{-2}\tau }^{(2)}}{\varLambda _{1}(s^{-2}\tau ,B)C_{n,s^{-2}\tau }^{(1)}}\), we have (1.10). This completes the proof of Theorem 3.2. □