1 Introduction and main results

Fourier integral operator on \(\mathbb{R}^{n}\) has been studied extensively and is related to many areas in analysis and PDEs. In [1], Sogge considered the Cauchy problem of the hyperbolic equations via the \(L^{p}\)-estimates theory of the Fourier integral operators (also see, for the local smoothing estimates of wave equations, e.g., [2, 3] and the references therein for some recent developments). For the Fourier integral operators with smooth amplitude, the \(L^{2}\)-regularity theory is comparably more progress. In [4] and [5], Eskin and Hörmander found the local and global \(L^{2}\)-regularity theory for Fourier integral operators, respectively. There are also some results for the \(L^{p}\) boundedness of Fourier integral operators with classical symbol and phase (see Littman [6], Miyachi [7], Peral [8], and Beals [9]).

Let be the Fourier transform of f. A Fourier integral operator T is a linear operator of the form

$$ T_{a,\varphi }f=\frac{1}{(2\pi )^{n}} \int _{\mathbb{R}^{n}} e^{ i \varphi (x,\xi )}a(x,\xi ) \hat{f}(\xi )\,d\xi $$
(1.1)

with symbol \(a(x,\xi )\) and phase \(\varphi (x,\xi )\), respectively. In particular, for \(\varphi (x,\xi )=\langle x,\xi \rangle \), the operator \(T_{a}\) is a so-called pseudo-differential operator. In [10], Hörmander showed that \(T_{a}\) is bounded in \(L^{2}(\mathbb{R}^{n})\), when \(a\in S^{m}_{\rho ,\delta }\), \(\delta <1\) and \(m\leq n(\rho -\delta )/2\). For \(a\in S^{0}_{1,1}\), Ching [11] proved that \(T_{a}\) is not bounded in \(L^{2}(\mathbb{R}^{n})\). Moveover, for \(a\in S^{m}_{\rho ,1}\), Rodino [12] showed that \(T_{a}\) is bounded in \(L^{2}(\mathbb{R}^{n})\) if and only if \(m< n(\rho -1)/2\). However, the operator \(T_{a}\) is not always \(L^{2}\)-bounded for \(a\in S^{n(\rho -1)/2}_{\rho ,1}\); see, for example, [1012]. The necessary and sufficient conditions of \(L^{2}\)-boundedness of \(T_{a}\) were obtained by Higuchi [13] as \(m= n(\rho -1)/2\). It is natural to ask if the corresponding results hold for the Fourier integral operators. Recently, Kenig, David, Salvador, and Wolfgang [1416] have studied the Fourier integral operators with rough symbol and rough phases, both of which behave in the spatial variable x like an \(L^{\infty }\)-function. More precisely, the symbol belongs to the class \(L^{\infty }S^{m}_{\varrho }\) whose constituent element a obeys

$$ \bigl\Vert \partial ^{\alpha }_{\xi }a(\cdot ,\xi ) \bigr\Vert _{L^{\infty }(\mathbb{R}^{n})} \leq C_{\alpha }\langle \xi \rangle ^{m-\varrho \vert \alpha \vert }. $$

Under this condition, for \(m=\min \{0,\frac{n}{2}(\rho -\delta )\}\), \(0\leq \rho \leq 1\), \(0\leq \delta <1\), and \(a\in S^{m}_{\rho ,\delta }\), Wolfgang [14] proved the global continuity on \(L^{p}\)-space with \(p\in [1,\infty ]\) of Fourier integral operators. A natural question is \(L^{2}\)-boundedness of Fourier integral operators for \(\delta =1\) and \(m= n(\rho -1)/2\). In this paper, we answer the question and prove the results for the Fourier integral operators.

Our main result could be stated as follows.

Theorem 1.1

Let\(T_{a,\varphi }\)be a Fourier integral operator given by (1.1) with symbol\(a(x,\xi )\in L^{\infty }S^{n(\rho -1)/2}_{\rho }(\omega )\)and phase function\(\varphi \in L^{\infty }\varPhi ^{2}\)satisfying the Lipschitz rough non-degeneracy condition. Then, for\(0\leq \rho \leq 1\), there exists a positive constantCsuch that

$$ \Vert T_{a,\varphi }u \Vert _{L^{2}}\leq C \Vert u \Vert _{L^{2}} . $$

Here, the symbol class \(L^{\infty }S^{n(\rho -1)/2}_{\rho }(\omega )\) is defined by Definition 2.2, the phase class \(L^{\infty }\varPhi ^{2}\) is given by Definition 2.5, and the Lipschitz rough non-degeneracy condition is defined by Definition 2.6.

Remark 1.1

Here we remark that, for \(a\in S^{n(\rho -1)/2}_{\rho ,1}\), Higuchi and Nagase [13] pointed out that the boundedness of the pseudo-differential operator \(T_{a}\) from \(L^{2}(\mathbb{R}^{n})\) to \(L^{2}(\mathbb{R}^{n})\) is not always true. As the main result in this paper, we give an answer for this problem for the Fourier integral operator \(T_{a,\varphi }\). The main idea of our approach is treating the symbol class \(L^{\infty }S^{m}_{\rho }(\omega )\), where \(m=n(\rho -1)/2\). In particular, our results of \(L^{2}(\mathbb{R}^{n})\)-boundedness for \(T_{a,\varphi }\) are also the best as far as we know. We also remark that our methods are different from the previous methods; see, for example, [13].

Finally, we make some conventions on notation. Throughout this article, we denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. We sometimes write \(A\lesssim B\) as shorthand for \(A\leq CB\). Let \(\mathbb{R}^{n}\) be an n-dimensional Euclidean space, \(x=(x_{1},\ldots ,x_{n})\) be a point in \(\mathbb{R}^{n}\), \(\mathbb{R}^{n}_{*}=\mathbb{R}^{n}\setminus \{0\}\), \(\mathbb{N}=\{1, 2,\ldots \}\), \(\mathbb{Z}_{+}=\mathbb{N}\cup \{0\}\), and \(\mathbb{Z}_{+}^{n}=(\mathbb{Z}_{+})^{n}\). For any multi-index \(\alpha = (\alpha _{1},\ldots ,\alpha _{n})\) and \(\beta = (\beta _{1},\ldots ,\beta _{n})\in \mathbb{Z}_{+}^{n}\), we let

$$ \vert \alpha \vert =\sum_{j=1}^{n} \alpha _{j}, \qquad \alpha +\beta =(\alpha _{1}+ \beta _{1},\ldots ,\alpha _{n}+\beta _{n}) ,\qquad \partial _{x}^{\alpha }= \frac{\partial ^{\alpha }}{\partial _{x_{1}}^{\alpha _{1}} \cdots \partial _{x_{n}}^{\alpha _{n}}}, $$

and \(\nabla _{\xi }=(\partial _{\xi _{1}},\ldots ,\partial _{ \xi _{n}})\). Also, in the sequel we use the notation

$$ \vert \xi \vert = \Biggl(\sum_{j=1}^{n} \xi _{j}^{2} \Biggr)^{1/2} \quad \text{and}\quad \langle \xi \rangle =\bigl(1+ \vert \xi \vert ^{2} \bigr)^{1/2}. $$

2 Definitions, notations, and preliminaries

The following definition is just [17].

Definition 2.1

Let \(m\in \mathbb{R}\) and \(0\leq \delta \), \(\rho \leq 1\). For any two multi-indices α and β, we assume that the function \(a(x,\xi )\) satisfies the following condition:

$$ \bigl\vert \partial ^{\beta }_{x}\partial ^{\alpha }_{\xi }a(x,\xi ) \bigr\vert \leq C_{ \alpha ,\beta } \langle \xi \rangle ^{m-\rho \vert \alpha \vert +\delta \vert \beta \vert }, $$
(2.1)

where \(C_{\alpha \beta }\) is a positive constant only dependent on α and β. Let the smooth amplitude \(S^{m}_{\rho ,\delta }\) be the set of all smooth functions \(a(x,\xi )\) satisfying condition as in (2.1). Then the pseudo-differential operator \(T_{a}\) with the symbol \(a(x,\xi )\in S^{m}_{\rho ,\delta }\) is given formally by

$$ (T_{a} f) (x)= \int _{\mathbb{R}^{n}} e^{i x\cdot \xi }a(x,\xi )\hat{f}( \xi )\,d\xi . $$

The following definition for the class \(L^{\infty }S^{m}_{\rho }(\omega )\) plays an important role in our setting.

Definition 2.2

Let m be a real number. A function \(a(x,\xi )\), which is smooth in the frequency variable ξ and bounded measurable in the spatial variable x, belongs to the symbol class \(L^{\infty }S^{m}_{\rho }(\omega )\) if, for all multi-indices α, it satisfies

$$ \bigl\Vert \partial ^{\alpha }_{\xi }a(x,\xi ) \bigr\Vert _{L^{\infty }(\mathbb{R}^{n})} \leq C_{\alpha }\langle \xi \rangle ^{m-\rho \vert \alpha \vert } \omega \bigl( \langle \xi \rangle \bigr), $$

where \(\omega (t)\) satisfies

$$ \int _{1}^{\infty }\frac{\omega (t)^{2}}{t}\,dt< \infty , $$
(2.2)

and \(\omega (t)\) is a nonnegative and decreasing function on \([1,\infty )\).

Remark 2.1

If \(\omega (t)\) satisfies (2.1), then \(\sum_{j=0}^{\infty }\omega ^{2}(2^{j})<\infty \).

David and Wolfgang [14] gave the class \(\varPhi ^{k}\) as follows.

Definition 2.3

([14], \(\varPhi ^{k}\))

A real-valued function \(\varphi (x,\xi )\) belongs to the class \(\varPhi ^{k}\) if \(\varphi (x,\xi )\in C^{\infty }(\mathbb{R}^{n}\times \mathbb{R}^{n}_{*})\) is positively homogeneous of degree 1 in the frequency variable ξ and satisfies the following condition: for any pair of multi-indices α and β, satisfying \(|\alpha |+|\beta |\geq k\), there exists a positive constant \(C_{\alpha ,\beta }\) such that

$$ \sup_{(x,\xi )\in \mathbb{R}^{n}\times \mathbb{R}^{n}_{*}} \vert \xi \vert ^{-1+ \alpha }\big|\partial _{\xi }^{\alpha }\partial _{x}^{\beta } \varphi (x, \xi )\big|\leq C_{\alpha ,\beta }. $$

In connection to the problem of local boundedness of Fourier integral operators, one considers phase functions \(\varphi (x,\xi )\) that are positively homogeneous of degree 1 in the frequency variable ξ for which

$$ \biggl\vert \det \frac{\partial ^{2}\varphi (x,\xi )}{\partial {x_{j}} \partial {\xi _{k}}} \biggr\vert \neq 0. $$

The latter is referred to as the non-degeneracy condition. However, for the purpose of proving global regularity results, we require a stronger condition than the non-degeneracy condition above.

Definition 2.4

([14], The strong non-degeneracy condition)

A real-valued function \(\varphi (x,\xi )\in C^{2}(\mathbb{R}^{n}\times \mathbb{R}^{n}_{*})\) satisfies strong non-degeneracy condition if there exists a positive constant c such that

$$ \biggl\vert \det \frac{\partial ^{2}\varphi (x,\xi )}{\partial {x_{j}} \partial {\xi _{k}}} \biggr\vert \geq c $$

for all \((x,\xi )\in \mathbb{R}^{n}\times \mathbb{R}^{n}_{*}\).

Remark 2.2

The phases in class \(\varPhi ^{2}\) satisfying the strong non-degeneracy condition arise naturally in the study of the equations of hyperbolic type, namely

$$ \varphi (x,\xi )= \vert \xi \vert +\langle x,\xi \rangle $$

belongs to the class \(\varPhi ^{2}\) and satisfies the strong non-degeneracy condition.

In [14], they introduced the nonsmooth version of the class \(\varPhi ^{k}\) which will be used in our setting.

Definition 2.5

([14], \(L^{\infty }\varPhi ^{k}\))

A real-valued function \(\varphi (x,\xi )\) belongs to the phase class \(L^{\infty }\varPhi ^{k}\) if it is positively homogeneous of degree 1 and smooth on \(\mathbb{R}^{n}_{*}\) in the frequency variable ξ, bounded measurable in the spatial variable x, and if for all multi-indices \(|\alpha |\geq k\) it satisfies

$$ \sup_{(x,\xi )\in \mathbb{R}^{n}\times \mathbb{R}^{n}_{*}} \vert \xi \vert ^{-1+ \alpha }\big|\partial _{\xi }^{\alpha }\varphi (x,\xi )\big|\leq C_{\alpha }. $$

Motivated by [14], we also need a Lipschitz rough non-degeneracy condition as follows.

Definition 2.6

(The Lipschitz rough non-degeneracy condition)

A real-valued function satisfies Lipschitz rough non-degeneracy condition if it is \(C^{\infty }\) on \(\mathbb{R}^{n}_{*}\) in the frequency variable ξ, bounded measurable in the spatial variable x, and there exist positive constants \(C_{1}\) and \(C_{2}\) such that, for all \(x,y\in \mathbb{R}^{n}\) and \(\xi \in \mathbb{R}^{n}_{*}\),

$$\begin{aligned}& \bigl\vert \partial _{\xi }\varphi (x,\xi )-\partial _{\xi }\varphi (y,\xi ) \bigr\vert \geq C_{1} \vert x-y \vert , \\& \bigl\vert \partial ^{\alpha }_{\xi }\varphi (x,\xi )- \partial ^{\alpha }_{\xi } \varphi (y,\xi ) \bigr\vert \leq C_{2} \vert x-y \vert \quad \text{for } \vert \alpha \vert \geq 2. \end{aligned}$$

3 Proof of the main result

In this section, we shall prove the main result, i.e., Theorem 1.1.

First we need a dyadic partition of unity. Let A be the annulus \(A=\{\xi \in \mathbb{R}^{n};\frac{1}{2}\leq |\xi |\leq 2\}\) and

$$ \chi _{0}(\xi )+\sum_{j=1}^{\infty } \chi _{j}(\xi )=1 \quad \text{for all } \xi \in \mathbb{R}^{n}, $$

where \(\chi _{0}(\xi )\in C^{\infty }_{0}(B(0,2))\) and \(\chi _{j}(\xi )=\chi (2^{-j}\xi )\) when \(j\geq 1\) with \(\chi (\xi )\in C^{\infty }_{0}(A)\). Now we decompose the operator \(T_{a,\varphi }\) as follows:

$$ T_{a,\varphi }=T_{ \chi _{0}}(D)+\sum _{j=1}^{\infty }T_{\chi _{j}}(D)=T_{0}(D)+ \sum_{j=1}^{\infty }T_{j}(D). $$
(3.1)

The first term in (3.1) is bounded on \(L^{2}(\mathbb{R}^{n})\) from Theorem 1.1.8 in [14]. After a change of variables, we have

$$\begin{aligned} T_{j}(D) =&\frac{1}{(2\pi )^{n}} \int _{\mathbb{R}^{n}}e^{ i \varphi (x, \xi )}\chi _{j}(\xi )a(x, \xi ) \hat{u}(\xi )\,d\xi \\ =&\frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}}e^{ i \cdot 2^{j\varrho } \varphi (x,\xi )}\chi _{j} \bigl(2^{j\varrho }\xi \bigr)a\bigl(x,2^{j \varrho }\xi \bigr) \hat{u} \bigl(2^{j\varrho }\xi \bigr)\,d\xi \\ =& \frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}}e^{ i \cdot 2^{j\varrho } \varphi (x,\xi )}\chi _{j} \bigl(2^{j\varrho }\xi \bigr)a\bigl(x,2^{j \varrho }\xi \bigr) \int _{\mathbb{R}^{n}}e^{ -i2^{j\varrho } \xi \cdot y}u(y)\,dy\,d\xi \\ =& \frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}\times \mathbb{R}^{n}}e^{ i\cdot 2^{j\varrho }( \varphi (x,\xi )-y\cdot \xi )} \chi _{j} \bigl(2^{j\varrho }\xi \bigr)a\bigl(x,2^{j\varrho }\xi \bigr) u(y)\,d\xi \,dy. \end{aligned}$$

The kernel of the operator \(T_{j}(D)\) is given by

$$ T_{j}(x,y)= \frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}}e^{ i\cdot 2^{j\varrho }( \varphi (x,\xi )-y\cdot \xi )}\chi _{j} \bigl(2^{j \varrho }\xi \bigr)a\bigl(x,2^{j\varrho }\xi \bigr)\,d\xi . $$

Let

$$ a_{j}(x,\xi )=\chi \bigl(2^{j(\varrho - 1) }\xi \bigr)a \bigl(x,2^{j\varrho }\xi \bigr). $$

Then

$$ A_{j}=\mathop{\operatorname{Supp}} _{\xi }a_{j} \subset \bigl\{ \xi ;2^{-1}2^{j(1- \varrho )}< \vert \xi \vert < 2 \cdot 2^{j(1-\varrho )} \bigr\} $$

and it satisfies

$$ \bigl\vert \partial ^{\alpha }_{\xi }a_{j}(x, \xi ) \bigr\vert \leq C_{\alpha }\cdot 2^{jn(\rho -1)/2}. $$
(3.2)

We can confine ourselves to dealing with the high frequency component \(T_{j}\) of \(T_{a,\varphi }\). Here we shall use a \(S_{j}=T_{j}T_{j}^{*}\) argument, and therefore,

$$\begin{aligned} S_{j}u(x) &= \frac{1}{(2\pi )^{n}} \int _{\mathbb{R}^{n}\times \mathbb{R}^{n}} e^{ i (\varphi (x,\xi )-\varphi (y,\xi ))}\chi _{j}^{2}( \xi )a(x,\xi )\overline{a(y,\xi )} u(y)\,dy\,d\xi \\ &= \frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}\times \mathbb{R}^{n}}e^{ i2^{j\varrho } (\varphi (x,\xi )-\varphi (y,\xi ))} \\ &\quad {} + \chi _{j}^{2}\bigl(2^{j\varrho }\xi \bigr)a \bigl(x,2^{j\varrho }\xi \bigr) \overline{a\bigl(y,2^{j\varrho }\xi \bigr)} u(y)\,d\xi \,dy. \end{aligned}$$

The kernel of the operator \(S_{j}=T_{j}T_{j}^{*}\) reads

$$ S_{j}(x,y)=\frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}} e^{ i2^{j\varrho } (\varphi (x,\xi )-\varphi (y,\xi ))}\chi _{j}^{2} \bigl(2^{j \varrho }\xi \bigr)a\bigl(x,2^{j\varrho }\xi \bigr)\overline{a \bigl(y,2^{j\varrho }\xi \bigr)} \,d\xi . $$

Let \(b_{j}(x,y,\xi )= \chi _{j}^{2}(2^{j\varrho }\xi )a(x,2^{j\varrho } \xi )\overline{a(y,2^{j\varrho }\xi )}\). Then

$$ \operatorname{Supp} b_{j}\subset \biggl\{ \xi : \frac{2^{j(1-\varrho )}}{2}< \vert \xi \vert < 2\cdot 2^{j(1-\varrho )} \biggr\} . $$

We claim that

$$ \bigl\vert \partial ^{\alpha }_{\xi }b_{j}(x,y, \xi ) \bigr\vert \leq C_{\alpha }2^{jn(\rho -1)} \omega ^{2}\bigl(2^{j}\bigr). $$

In fact,

$$\begin{aligned} \bigl\vert \partial ^{\alpha }_{\xi }b_{j}(x,y, \xi ) \bigr\vert =& \bigl\vert \partial ^{\alpha }_{\xi } \bigl[\chi _{j}^{2}\bigl(2^{j\varrho }\xi \bigr)a \bigl(x,2^{j\varrho }\xi \bigr) \overline{a\bigl(y,2^{j\varrho }\xi \bigr)}\bigr] \bigr\vert \\ =&\sum_{\alpha _{1}+\alpha _{2}=\alpha } \bigl\vert \partial ^{\alpha _{1}}_{\xi }\bigl[a\bigl(x,2^{j\varrho }\xi \bigr) \overline{a\bigl(y,2^{j\varrho }\xi \bigr)}\bigr] \bigr\vert \bigl\vert \partial ^{\alpha _{2}}_{\xi }\chi ^{2} \bigl(2^{-j(1-\varrho ) }\xi \bigr) \bigr\vert \\ \lesssim & \sum_{\alpha _{1}+\alpha _{2}=\alpha }\bigl(2^{j\varrho } \bigr)^{ \vert \alpha _{1} \vert } \bigl\vert \bigl(\partial ^{\alpha _{1}}_{\xi }(a \cdot \bar{a}) \bigr) \bigl(x,2^{j \varrho }\xi \bigr) \bigr\vert \omega ^{2}\bigl(2^{j}\bigr) \\ &{} \times 2^{-j(1-\varrho ) \vert \alpha _{2} \vert } \bigl\vert \bigl( \partial ^{\alpha _{2}}_{\xi } \chi \bigr) \bigl(2^{-j(1-\varrho ) }\xi \bigr) \bigr\vert \\ \lesssim & \sum_{\alpha _{1}+\alpha _{2}=\alpha }2^{j\varrho \vert \alpha _{1} \vert }\bigl\langle 2^{j\varrho }\xi \bigr\rangle ^{n(\rho -1)-\varrho \vert \alpha _{1} \vert }2^{-j(1-\varrho ) \vert \alpha _{2} \vert } \omega ^{2}\bigl(2^{j}\bigr) \\ \lesssim & \sum_{\alpha _{1}+\alpha _{2}=\alpha }2^{j\varrho \vert \alpha _{1} \vert }2^{j(n(\rho -1)-\varrho \vert \alpha _{1} \vert )}2^{-j(1-\varrho ) \vert \alpha _{2} \vert } \omega ^{2}\bigl(2^{j}\bigr) \\ =& \sum_{\alpha _{1}+\alpha _{2}=\alpha }2^{jn(\rho -1)-j(1- \varrho ) \vert \alpha _{2} \vert }\omega ^{2}\bigl(2^{j}\bigr) \\ =&2^{jn(\rho -1)}\sum_{\alpha _{2}}2^{-j(1-\varrho ) \vert \alpha _{2} \vert } \omega ^{2}\bigl(2^{j}\bigr) \\ \lesssim & 2^{jn(\rho -1)}\omega ^{2}\bigl(2^{j} \bigr). \end{aligned}$$
(3.3)

Next we consider the following differential operators for \(j\in \mathbb{N}\):

$$ L_{j}(x,y,D)= \frac{\nabla _{\xi }\varPhi \nabla _{\xi }}{i2^{j\varrho } \vert \nabla _{\xi }\varPhi \vert ^{2}}, $$
(3.4)

where \(\varPhi (x,y,\xi )=\varphi (x,\xi )-\varphi (y,\xi )\). So \(L_{j}^{N}(x,y,D)e^{i2^{j\varrho }\varPhi }=e^{i2^{j\varrho }\varPhi }\) and

$$ L_{j}^{*}(x,y,D)=-\nabla _{\xi }\frac{\nabla _{\xi }\varPhi }{i2^{j\varrho } \vert \nabla _{\xi }\varPhi \vert ^{2}}. $$
(3.5)

From this and (3.4), it follows that

$$\begin{aligned} S_{j}(x,y) =& \frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}} e^{ i2^{j\varrho } (\varphi (x,\xi )-\varphi (y,\xi ))}\chi _{j}^{2} \bigl(2^{j \varrho }\xi \bigr)a\bigl(x,2^{j\varrho }\xi \bigr)\overline{a \bigl(y,2^{j\varrho }\xi \bigr)} \,d\xi \\ =& \frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}} \bigl(L_{j}^{N}e^{i2^{j \varrho }\varPhi } \bigr)b_{j}(x,y \xi )\,d\xi \\ =& \frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}}e^{i2^{j \varrho }\varPhi }\bigl(L_{j}^{*} \bigr)^{N}b_{j}\,d\xi . \end{aligned}$$

Moreover, by (3.5), we see that

$$\begin{aligned} \partial _{\xi _{\mu _{1}}} \biggl[ \frac{\nabla _{\xi }\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}}b_{j} \biggr] =& \biggl( \partial _{\xi _{\mu _{1}}}\biggl[ \frac{\nabla _{\xi }\varPhi b_{j}}{ \vert \nabla _{\xi }\varPhi \vert ^{2}} \biggr] \biggr) \\ =& \biggl[\frac{\partial _{\xi _{1}}\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}} \biggr]\partial _{\xi _{\mu _{1}}}b_{j}+ \partial _{\xi _{\mu _{1}}} \biggl[\frac{\partial _{\xi _{1}}\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}} \biggr]b_{j}, \ldots , \biggl[ \frac{\partial _{\xi _{n}}\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}} \biggr] \partial _{\xi _{\mu _{1}}}b_{j} \\ &{} +\partial _{\xi _{\mu _{1}}} \biggl[ \frac{\partial _{\xi _{n}}\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}} \biggr]b_{j}, \end{aligned}$$

which implies that

$$\begin{aligned} L^{*}_{j}b_{j} =& \nabla _{\xi } \biggl[ \frac{\nabla _{\xi }\varPhi }{-i2^{j\varrho } \vert \nabla _{\xi }\varPhi \vert ^{2}}b_{j} \biggr] \\ =&\frac{1}{-i2^{j\varrho }} \sum_{l=1}^{n} \biggl\{ \biggl[ \frac{\partial _{\xi _{l}}\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}} \biggr] \partial _{\xi _{l}}b_{j} +\partial _{\xi _{l}} \biggl[ \frac{\partial _{\xi _{l}}\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}} \biggr]b_{j} \biggr\} . \end{aligned}$$

Thus

$$\begin{aligned} \bigl(L_{j}^{*}\bigr)^{N}b_{j} &= \frac{1}{(-i2^{j\varrho })^{N}}\nabla _{\xi }\underbrace{ \biggl\{ \frac{\nabla _{\xi }\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}}\cdots \biggl[\nabla _{\xi }\biggl( \frac{\nabla _{\xi }\varPhi }{ \vert \nabla _{\xi }\varPhi \vert ^{2}}b_{j}\biggr) \biggr] \biggr\} }_{N} \\ & =\frac{1}{(-i2^{j\varrho })^{N}}\sum_{\alpha _{1}+\cdots +\alpha _{N}+ \beta =N}\partial ^{\alpha _{1}} \biggl( \frac{\varPhi _{\mu _{1}}}{ \vert \nabla \varPhi \vert ^{2}} \biggr)\cdots \partial ^{ \alpha _{N}} \biggl(\frac{\varPhi _{\mu _{N}}}{ \vert \nabla \varPhi \vert ^{2}} \biggr)\partial ^{\beta }b_{j}, \end{aligned}$$
(3.6)

where \(\varPhi _{\mu _{k}}=\partial _{\xi _{\mu _{k}}}\varPhi \). Because of the following equation

$$ \partial ^{k}_{\xi } \biggl(\frac{\varPhi _{\mu }}{ \vert \nabla \varPhi \vert ^{2}} \biggr)= \sum_{k_{0}+k_{1}+\cdots +k_{j}=k} \frac{C_{k_{0},\ldots ,k_{j}}\partial ^{k_{0}}_{\xi }\varPhi _{\mu } \partial ^{k_{1}}_{\xi } \vert \nabla \varPhi \vert ^{2}\cdot \partial ^{k_{j}}_{\xi } \vert \nabla \varPhi \vert ^{2}}{ \vert \nabla \varPhi \vert ^{2+2j}}, $$

by Definition 2.6, we see that

$$ \bigl\vert \partial ^{k_{0}}_{\xi }\varPhi _{\mu } \bigr\vert \lesssim \vert x-y \vert \quad \text{and} \quad \bigl\vert \partial ^{k}_{\xi }|\nabla \varPhi \vert ^{2}\bigr| \lesssim \vert x-y \vert ^{2}. $$

From this, together with (3.3) and (3.6), we further obtain

$$\begin{aligned} \bigl\vert \bigl(L_{j}^{*}\bigr)^{N}b_{j} \bigr\vert \lesssim & \frac{1}{2^{j\varrho N}}\cdot \frac{1}{ \vert x-y \vert ^{N}}2^{jn(\rho -1)} \omega ^{2}\bigl(2^{j}\bigr). \\ =& \frac{1}{ [2^{j\varrho } \vert x-y \vert ]^{N}}2^{jn(\rho -1)} \omega ^{2} \bigl(2^{j}\bigr). \end{aligned}$$

Integration by parts yields

$$\begin{aligned} \begin{aligned} S_{j}(x,y) &= \frac{2^{j\varrho n}}{(2\pi )^{n}} \int _{\mathbb{R}^{n}}e^{i2^{j \varrho }\varPhi }\bigl(L_{j}^{*} \bigr)^{N}b_{j}\,d\xi \\ &\lesssim \frac{2^{j\varrho n}}{ [2^{j\varrho } \vert x-y \vert ]^{N}}2^{jn( \rho -1)}\omega ^{2} \bigl(2^{j}\bigr)2^{j(1-\varrho )n} \\ &= \frac{2^{j\varrho n}}{ [2^{j\varrho } \vert x-y \vert ]^{N}} \omega ^{2}\bigl(2^{j}\bigr). \end{aligned} \end{aligned}$$

Thus,

$$ \bigl\vert S_{j}(x,y) \bigr\vert \sum _{l=0}^{N}\bigl(2^{j\varrho } \vert x-y \vert \bigr)^{l}\lesssim 2^{j \varrho n}\omega ^{2} \bigl(2^{j}\bigr), $$

which implies that

$$ \bigl\vert S_{j}(x,y) \bigr\vert \lesssim \frac{2^{j\varrho n}}{(1+2^{j\varrho } \vert x-y \vert )^{N}} \omega ^{2}\bigl(2^{j}\bigr). $$

This further gives

$$\begin{aligned} \sup_{x} \int _{\mathbb{R}^{n}} \bigl\vert S_{j}(x,y) \bigr\vert \,dy & \lesssim 2^{j \varrho n}\omega ^{2}\bigl(2^{j} \bigr) \int _{\mathbb{R}^{n}} \frac{1}{(1+2^{j\varrho } \vert x-y \vert )^{N}}\,dy \\ & \lesssim \omega ^{2}\bigl(2^{j}\bigr) \int _{\mathbb{R}^{n}} \frac{1}{(1+ \vert z \vert )^{N}}\,dz\lesssim \omega ^{2}\bigl(2^{j}\bigr). \end{aligned}$$

By Young’s inequality, we obtain

$$ \bigl\Vert S_{j}u(x) \bigr\Vert _{L^{2}}\lesssim \omega ^{2}\bigl(2^{j}\bigr) \bigl\Vert u(x) \bigr\Vert _{L^{2}}. $$

Therefore, we have

$$\begin{aligned} \bigl\Vert T^{*}_{j}u \bigr\Vert ^{2}_{L^{2}} =& \bigl\langle T^{*}_{j}u, T^{*}_{j}u\bigr\rangle = \bigl\langle u,T_{j}T^{*}_{j}u\bigr\rangle \\ \leq & \Vert u \Vert _{L^{2}} \Vert S_{j}u \Vert _{L^{2}} \\ \leq & C \omega ^{2}\bigl(2^{j}\bigr) \Vert u \Vert _{L^{2}}^{2}. \end{aligned}$$

Namely,

$$ \Vert T_{j}u \Vert _{L^{2}}\leq C \omega \bigl(2^{j}\bigr) \Vert u \Vert _{L^{2}}. $$
(3.7)

Next we need a Littlewood–Paley decomposition. Let \(\psi _{0}:\mathbb{R}^{n}\rightarrow \mathbb{R}\) be a smooth radial function which is equal to one on the unit ball centric at the origin and supported on its concentric double. Set \(\psi (\xi )=\psi _{0}(\xi )-\psi _{0}(2\xi )\) and \(\psi _{k}(\xi )=\psi (2^{-k}\xi )\). Then

$$ \psi _{0}(\xi )+\sum_{k=1}^{\infty } \psi _{k}(\xi )=1\quad \text{for all } \xi \in \mathbb{R}^{n}, $$

and \(\operatorname{supp}\psi _{k}(\xi )\subset \{\xi :2^{k-1}\leq |\xi |\leq 2^{k+1} \}\) for \(k\geq 1\). And we further have

$$ \hat{u}(\xi )=\sum_{k=0}^{\infty }\hat{u}( \xi )\psi _{k}(\xi )=\sum_{k=0}^{ \infty } \hat{u}_{k}(\xi ). $$

Then

$$ T_{a,\varphi }u =\sum_{j=1}^{\infty }T_{j}u= \sum_{k=0}^{\infty }\sum _{j=1}^{\infty } \int _{\mathbb{R}^{n}}e^{i\varphi (x, \xi )}a_{j}(x,\xi ) \hat{u}_{k}(\xi )\,d\xi . $$

For simplicity of notation, we write

$$ \sum_{k=0}^{\infty }\sum _{j=1}^{\infty } \int _{\mathbb{R}^{n}}e^{i \varphi (x,\xi )}a_{j}(x,\xi ) \hat{u}_{k}(\xi )\,d\xi =\sum_{j=1}^{ \infty }T_{j}u_{j}, $$

where

$$ u_{j}=\sum_{k=0}^{\infty }a_{j}(x, \xi )\hat{u}_{k}(\xi ). $$

From this, (3.7), Cauchy–Schwartz’s inequality, and Remark 2.1, it follows that

$$\begin{aligned} \Vert T_{a,\varphi }u \Vert _{L^{2}}&= \Biggl\Vert \sum _{j=0}^{\infty }T_{j}u_{j} \Biggr\Vert _{L^{2}} \\ &\lesssim \sum_{j=0}^{\infty }\omega \bigl(2^{j}\bigr) \Vert u_{j} \Vert _{L^{2}} \\ &\lesssim \Biggl(\sum_{j=0}^{\infty }\omega ^{2}\bigl(2^{j}\bigr) \Biggr)^{1/2} \Biggl( \sum_{j=0}^{\infty } \Vert u_{j} \Vert _{L^{2}}^{2} \Biggr)^{1/2} \\ &\lesssim \Vert u \Vert _{L^{2}}. \end{aligned}$$

This finishes the proof of Theorem 1.1.